TY - JOUR
T1 - RCCI engine operation towards 60% thermal efficiency
AU - Splitter, Derek
AU - Wissink, Martin
AU - Delvescovo, Dan
AU - Reitz, Rolf
PY - 2013
Y1 - 2013
N2 - The present experimental study explored methods to obtain the maximum practical cycle efficiency with Reactivity Controlled Compression Ignition (RCCI). The study used both zero-dimensional computational cycle simulations and engine experiments. The experiments were conducted using a single-cylinder heavy-duty research diesel engine adapted for dual fuel operation, with and without piston oil gallery cooling. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOX and PM emissions in-cylinder, while simultaneously realizing gross indicated thermal efficiencies in excess of 56%. The present study considered RCCI operation at a fixed load condition of 6.5 bar IMEP an engine speed of 1,300 [r/min]. The experiments used a piston with a flat profile with 18.7:1 compression ratio. The results demonstrated that the indicated gross thermal efficiency could be increased by not cooling the piston, by using high dilution, and by optimizing in-cylinder fuel stratification with two fuels of large reactivity differences. The best results achieved gross indicated thermal efficiencies near 60%. By further analyzing the results with zero-dimensional engine cycle simulations, the limits of cycle efficiency were investigated. The simulations demonstrated that the RCCI operation without piston oil cooling rejected less heat, and that 94% of the maximum cycle efficiency could be achieved while simultaneously obtaining ultra-low NO X and PM emissions.
AB - The present experimental study explored methods to obtain the maximum practical cycle efficiency with Reactivity Controlled Compression Ignition (RCCI). The study used both zero-dimensional computational cycle simulations and engine experiments. The experiments were conducted using a single-cylinder heavy-duty research diesel engine adapted for dual fuel operation, with and without piston oil gallery cooling. In previous studies, RCCI combustion with in-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injections of higher reactivity fuels was demonstrated to permit near-zero levels of NOX and PM emissions in-cylinder, while simultaneously realizing gross indicated thermal efficiencies in excess of 56%. The present study considered RCCI operation at a fixed load condition of 6.5 bar IMEP an engine speed of 1,300 [r/min]. The experiments used a piston with a flat profile with 18.7:1 compression ratio. The results demonstrated that the indicated gross thermal efficiency could be increased by not cooling the piston, by using high dilution, and by optimizing in-cylinder fuel stratification with two fuels of large reactivity differences. The best results achieved gross indicated thermal efficiencies near 60%. By further analyzing the results with zero-dimensional engine cycle simulations, the limits of cycle efficiency were investigated. The simulations demonstrated that the RCCI operation without piston oil cooling rejected less heat, and that 94% of the maximum cycle efficiency could be achieved while simultaneously obtaining ultra-low NO X and PM emissions.
UR - http://www.scopus.com/inward/record.url?scp=84881201013&partnerID=8YFLogxK
U2 - 10.4271/2013-01-0279
DO - 10.4271/2013-01-0279
M3 - Conference article
AN - SCOPUS:84881201013
SN - 0148-7191
VL - 2
JO - SAE Technical Papers
JF - SAE Technical Papers
T2 - SAE 2013 World Congress and Exhibition
Y2 - 16 April 2013 through 18 April 2013
ER -