Abstract
Clathrate hydrates are crystalline solids characterized by their ability to accommodate large quantities of guest molecules. Although CH4 and CO2 are the traditional guests found in natural systems, incorporating smaller molecules (e.g., H2) is challenging due to the need to apply higher pressures to stabilize the hydrogen-bonded network. Another critical limitation of hydrates is the slow nucleation and growth kinetics. Here, we show that specially designed activated carbon materials can surpass these obstacles by acting as nanoreactors promoting the nucleation and growth of H2 hydrates. The confinement effects in the inner cavities promote the massive growth of hydrogen hydrates at moderate temperatures, using pure water, with extremely fast kinetics and much lower pressures than the bulk system.
Original language | English |
---|---|
Article number | 5953 |
Journal | Nature Communications |
Volume | 13 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2022 |
Externally published | Yes |
Funding
We would like to acknowledge financial support from Ministerio de Ciencia e Innovación (Project PID2019-108453GB-C21), MCIN/AEI/10.13039/501100011033 and EU “NextGeneration/PRTR” (Project PCI2020-111968 /3D-Photocat) – JSA. Neutron scattering experiments were performed at ORNL’s Spallation Neutron Source, IPTS-27062, supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC0500OR22725 with UT Battelle, LLC—J.S.A., Y.Q.C., L.D., A.J.R.C. We gratefully acknowledge research support from the Hydrogen Materials—Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technology Office, under Contract Number DE-AC05-00OR22725—R.B.-X. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowledges the US government license to provide public access under the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). We would like to acknowledge financial support from Ministerio de Ciencia e Innovación (Project PID2019-108453GB-C21), MCIN/AEI/10.13039/501100011033 and EU “NextGeneration/PRTR” (Project PCI2020-111968 /3D-Photocat) – JSA. Neutron scattering experiments were performed at ORNL’s Spallation Neutron Source, IPTS-27062, supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE, under Contract No. DE-AC0500OR22725 with UT Battelle, LLC—J.S.A., Y.Q.C., L.D., A.J.R.C.. We gratefully acknowledge research support from the Hydrogen Materials—Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technology Office, under Contract Number DE-AC05-00OR22725—R.B.-X. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The publisher acknowledges the US government license to provide public access under the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ).