Abstract
Ferritic-martensitic (FM) alloys are expected to play an important role as cladding or structural components in Generation IV systems operating in the temperature range 350-700 °C and to doses up to 200 dpa. Oxide dispersion strengthened (ODS) ferritic-martensitic steels have been developed to operate at higher temperatures than traditional FM steels. These steels contain nanometer-sized Y-Ti-O nanoclusters as a strengthening mechanism. Heavy ion irradiation has been used to determine the nanocluster stability over a temperature range of 500-700 °C to doses of 150 dpa. At all temperatures, the average nanocluster size decreases but the nanocluster density increases. The increased density of smaller nanoclusters under radiation should lead to strengthening of the matrix. While a reduction in size under irradiation has been reported in some other studies, many report oxide stability. The data from this study are contrasted to the available literature to highlight the differences in the reported radiation response.
Original language | English |
---|---|
Pages (from-to) | 26-37 |
Number of pages | 12 |
Journal | Journal of Nuclear Materials |
Volume | 375 |
Issue number | 1 |
DOIs | |
State | Published - Mar 30 2008 |