TY - JOUR
T1 - Radiation-Induced Solid-State Transformations of Uranyl Peroxides
AU - Fairley, Melissa
AU - Felton, Daniel E.
AU - Sigmon, Ginger E.
AU - Szymanowski, Jennifer E.S.
AU - Poole, Nicholas A.
AU - Nyman, May
AU - Burns, Peter C.
AU - Laverne, Jay A.
N1 - Publisher Copyright:
© 2021 American Chemical Society.
PY - 2022/1/17
Y1 - 2022/1/17
N2 - Single-crystal X-ray diffraction studies of pristine and γ-irradiated Ca2[UO2(O2)3]·9H2O reveal site-specific atomic-scale changes during the solid-state progression from a crystalline to X-ray amorphous state with increasing dose. Following γ-irradiation to 1, 1.5, and 2 MGy, the peroxide group not bonded to Ca2+ is progressively replaced by two hydroxyl groups separated by 2.7 Å (with minor changes in the unit cell), whereas the peroxide groups bonded to Ca2+ cations are largely unaffected by irradiation prior to amorphization, which occurs by a dose of 3 MGy. The conversion of peroxide to hydroxyl occurs through interaction of neighboring lattice H2O molecules and ionization of the peroxide O-O bond, which produces two hydroxyls, and allows isolation of the important monomer building block, UO2(O2)2(OH)24-, that is ubiquitous in uranyl capsule polyoxometalates. Steric crowding in the equatorial plane of the uranyl ion develops and promotes transformation to an amorphous phase. In contrast, γ-irradiation of solid Li4[(UO2)(O2)3]·10H2O results in a solid-state transformation to a well-crystallized peroxide-free uranyl oxyhydrate containing sheets of equatorial edge and vertex-sharing uranyl pentagonal bipyramids with likely Li and H2O in interlayer positions. The irradiation products of these two uranyl triperoxide monomers are compared via X-ray diffraction (single-crystal and powder) and Raman spectroscopy, with a focus on the influence of the Li+ and Ca2+ countercations. Highly hydratable and mobile Li+ yields to uranyl hydrolysis reactions, while Ca2+ provides lattice rigidity, allowing observation of the first steps of radiation-promoted transformation of uranyl triperoxide.
AB - Single-crystal X-ray diffraction studies of pristine and γ-irradiated Ca2[UO2(O2)3]·9H2O reveal site-specific atomic-scale changes during the solid-state progression from a crystalline to X-ray amorphous state with increasing dose. Following γ-irradiation to 1, 1.5, and 2 MGy, the peroxide group not bonded to Ca2+ is progressively replaced by two hydroxyl groups separated by 2.7 Å (with minor changes in the unit cell), whereas the peroxide groups bonded to Ca2+ cations are largely unaffected by irradiation prior to amorphization, which occurs by a dose of 3 MGy. The conversion of peroxide to hydroxyl occurs through interaction of neighboring lattice H2O molecules and ionization of the peroxide O-O bond, which produces two hydroxyls, and allows isolation of the important monomer building block, UO2(O2)2(OH)24-, that is ubiquitous in uranyl capsule polyoxometalates. Steric crowding in the equatorial plane of the uranyl ion develops and promotes transformation to an amorphous phase. In contrast, γ-irradiation of solid Li4[(UO2)(O2)3]·10H2O results in a solid-state transformation to a well-crystallized peroxide-free uranyl oxyhydrate containing sheets of equatorial edge and vertex-sharing uranyl pentagonal bipyramids with likely Li and H2O in interlayer positions. The irradiation products of these two uranyl triperoxide monomers are compared via X-ray diffraction (single-crystal and powder) and Raman spectroscopy, with a focus on the influence of the Li+ and Ca2+ countercations. Highly hydratable and mobile Li+ yields to uranyl hydrolysis reactions, while Ca2+ provides lattice rigidity, allowing observation of the first steps of radiation-promoted transformation of uranyl triperoxide.
UR - http://www.scopus.com/inward/record.url?scp=85122745903&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.1c02603
DO - 10.1021/acs.inorgchem.1c02603
M3 - Article
C2 - 34965099
AN - SCOPUS:85122745903
SN - 0020-1669
VL - 61
SP - 882
EP - 889
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 2
ER -