Abstract
H-mode operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge-localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the β limit and reduced core transport regions needed for advanced tokamak operation. Recent experimental results from DIII-D have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation which is ELM-free and yet has good density control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 s or >25 energy confinement times τE). By forming the core barrier and then stepping up the input power, we have achieved βNH89 = 7 for up to 10 times the τE of 160 ms. The βNH89 values of 7 substantially exceed the value of 4 routinely achieved in standard ELMing H-mode. The key factors in creating the quiescent H-mode operation are neutral beam injection in the direction opposite to the plasma current (counter injection) plus cryopumping to reduce the density. Density control in the quiescent H-mode is possible because of the presence of an edge MHD oscillation, the edge harmonic oscillation, which enhances the edge particle transport while leaving the energy transport unaffected.
Original language | English |
---|---|
Article number | 325 |
Pages (from-to) | A253-A263 |
Journal | Plasma Physics and Controlled Fusion |
Volume | 44 |
Issue number | 5 A |
DOIs | |
State | Published - May 2002 |
Event | 8th IAEA Technical Committee Meeting on H-Mode Physics and Transport Barriers - Toki, Japan Duration: Sep 5 2001 → Sep 7 2001 |