Abstract
On-surface covalent self-assembly of organic molecules is a very promising bottom-up approach for producing atomically controlled nanostructures. Due to their highly tuneable properties, these structures may be used as building blocks in electronic carbon-based molecular devices. Following this idea, here we report on the electronic structure of an ordered array of poly(para-phenylene) nanowires produced by surface-catalysed dehalogenative reaction. By scanning tunnelling spectroscopy we follow the quantization of unoccupied molecular states as a function of oligomer length, with Fermi level crossing observed for long chains. Angle-resolved photoelectron spectroscopy reveals a quasi-1D valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the band structure, including the gap size and charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour.
Original language | English |
---|---|
Article number | 10235 |
Journal | Nature Communications |
Volume | 7 |
DOIs | |
State | Published - Jan 4 2016 |
Funding
This work is supported by the Conseil Franco-Québecois de Coopération Universitaire and the France-Italie International Program of Scientific Cooperation (PICS-CNRS). D.F.P. and F.R. are supported by NSERC Discovery Grants as well as an FRQNT team grant and an MEIE project (collaboration with Belgium). F.R. acknowledges NSERC for an EWR Steacie Memorial Fellowship and Elsevier for a grant from Applied Surface Science. L.C. acknowledges partial salary support through a personal fellowship from FRSQ. The theoretical work at Rensselaer Polytechnic Institute (RPI) was supported by New York State under NYSTAR program C080117 and the Office of Naval Research. L.L. was supported by Eugene P. Wigner Fellowship at Oak Ridge National Laboratory.
Funders | Funder number |
---|---|
Applied Surface Science | |
Conseil Franco-Québecois de Coopération Universitaire | |
FRSQ | |
Office of Naval Research | |
Oak Ridge National Laboratory | |
Empire State Development's Division of Science, Technology and Innovation | C080117 |
Natural Sciences and Engineering Research Council of Canada | |
Fonds de recherche du Québec – Nature et technologies |