Quantum supremacy using a programmable superconducting processor

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G.S.L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin FowlerCraig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, John M. Martinis

Research output: Contribution to journalArticlepeer-review

4976 Scopus citations

Abstract

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2–7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8–14 for this specific computational task, heralding a much-anticipated computing paradigm.

Original languageEnglish
Pages (from-to)505-510
Number of pages6
JournalNature
Volume574
Issue number7779
DOIs
StatePublished - Oct 24 2019

Funding

Acknowledgements We are grateful to E. Schmidt, S. Brin, S. Pichai, J. Dean, J. Yagnik and J. Giannandrea for their executive sponsorship of the Google AI Quantum team, and for their continued engagement and support. We thank P. Norvig, J. Yagnik, U. Hölzle and S. Pichai for advice on the manuscript. We acknowledge K. Kissel, J. Raso, D. L. Yonge-Mallo, O. Martin and N. Sridhar for their help with simulations. We thank G. Bortoli and L. Laws for keeping our team organized. This research used resources from the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility (supported by contract DE-AC05-00OR22725). A portion of this work was performed in the UCSB Nanofabrication Facility, an open access laboratory. R.B., S.M., and E.G.R. appreciate support from the NASA Ames Research Center and from the Air Force Research (AFRL) Information Directorate (grant F4HBKC4162G001). T.S.H. is supported by the DOE Early Career Research Program. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of AFRL or the US government.

Fingerprint

Dive into the research topics of 'Quantum supremacy using a programmable superconducting processor'. Together they form a unique fingerprint.

Cite this