Abstract
Metasurfaces based on resonant nanophotonic structures have enabled innovative types of flat-optics devices that often outperform the capabilities of bulk components,yet these advances remain largely unexplored for quantum applications.We show that nonclassical multiphoton interferences can be achieved at the subwavelength scale in all-dielectric metasurfaces.We simultaneously image multiple projections of quantum states with a single metasurface,enabling a robust reconstruction of amplitude,phase,coherence, and entanglement of multiphoton polarization-encoded states.One-and two-photon states are reconstructed through nonlocal photon correlation measurements with polarizationinsensitive click detectors positioned after the metasurface, and the scalability to higher photon numbers is established theoretically.Our work illustrates the feasibility of ultrathin quantum metadevices for the manipulation and measurement of multiphoton quantum states,with applications in free-space quantum imaging and communications.
Original language | English |
---|---|
Pages (from-to) | 1104-1108 |
Number of pages | 5 |
Journal | Science |
Volume | 361 |
Issue number | 6407 |
DOIs | |
State | Published - Sep 14 2018 |
Funding
This work was supported by the Australian Research Council (including projects DP160100619, DP150103733, and DE180100070) and the Ministry of Science and Technology (MOST), Taiwan, under contract 106-2221-E-008-068-MY3
Funders | Funder number |
---|---|
Australian Research Council | |
Ministry of Science and Technology | 106-2221-E-008-068-MY3 |
Australian Research Council | DP160100619, DE180100070, DP150103733 |