Quantum Enhanced Probes of Spontaneous Time-Reversal Symmetry Breaking

Benjamin J. Lawrie, Chengyun Hua, Seongjin Hong, Yun Yi Pai, Matthew Feldman, Claire E. Marvinney, Raphael Pooser, Alberto Marino

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We describe a theoretical framework and initial experimental evidence for quantum-enhanced magneto-optical microscopies capable of probing spontaneous time-reversal symmetry breaking in topological materials with 10 nrad/√Hz sensitivity at temperatures down to 83 mK.

Original languageEnglish
Title of host publicationCLEO
Subtitle of host publicationApplications and Technology, CLEO:A and T 2023
PublisherOptical Society of America
ISBN (Electronic)9781957171258
DOIs
StatePublished - 2023
EventCLEO: Applications and Technology, CLEO:A and T 2023 - Part of Conference on Lasers and Electro-Optics 2023 - San Jose, United States
Duration: May 7 2023May 12 2023

Publication series

NameCLEO: Applications and Technology, CLEO:A and T 2023

Conference

ConferenceCLEO: Applications and Technology, CLEO:A and T 2023 - Part of Conference on Lasers and Electro-Optics 2023
Country/TerritoryUnited States
CitySan Jose
Period05/7/2305/12/23

Fingerprint

Dive into the research topics of 'Quantum Enhanced Probes of Spontaneous Time-Reversal Symmetry Breaking'. Together they form a unique fingerprint.

Cite this