TY - GEN
T1 - Quantum Annealing for Automated Feature Selection in Stress Detection
AU - Nath, Rajdeep Kumar
AU - Thapliyal, Himanshu
AU - Humble, Travis S.
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/7
Y1 - 2021/7
N2 - We present a novel methodology for automated feature subset selection from a pool of physiological signals using Quantum Annealing (QA). As a case study, we will investigate the effectiveness of QA-based feature selection techniques in selecting the optimal feature subset for stress detection. Features are extracted from four signal sources: foot EDA, hand EDA, ECG, and respiration. The proposed method embeds the feature variables extracted from the physiological signals in a binary quadratic model. The bias of the feature variable is calculated using the Pearson correlation coefficient between the feature variable and the target variable. The weight of the edge connecting the two feature variables is calculated using the Pearson correlation coefficient between two feature variables in the binary quadratic model. Subsequently, D-Wave's clique sampler is used to sample cliques from the binary quadratic model. The underlying solution is then re-sampled to obtain multiple good solutions and the clique with the lowest energy is returned as the optimal solution. The proposed method is compared with commonly used feature selection techniques for stress detection. Results indicate that QA-based feature subset selection performed equally as that of classical techniques. However, under data uncertainty conditions such as limited training data, the performance of quantum annealing for selecting optimum features remained unaffected, whereas a significant decrease in performance is observed with classical feature selection techniques. Preliminary results show the promise of quantum annealing in optimizing the training phase of a machine learning classifier, especially under data uncertainty conditions.
AB - We present a novel methodology for automated feature subset selection from a pool of physiological signals using Quantum Annealing (QA). As a case study, we will investigate the effectiveness of QA-based feature selection techniques in selecting the optimal feature subset for stress detection. Features are extracted from four signal sources: foot EDA, hand EDA, ECG, and respiration. The proposed method embeds the feature variables extracted from the physiological signals in a binary quadratic model. The bias of the feature variable is calculated using the Pearson correlation coefficient between the feature variable and the target variable. The weight of the edge connecting the two feature variables is calculated using the Pearson correlation coefficient between two feature variables in the binary quadratic model. Subsequently, D-Wave's clique sampler is used to sample cliques from the binary quadratic model. The underlying solution is then re-sampled to obtain multiple good solutions and the clique with the lowest energy is returned as the optimal solution. The proposed method is compared with commonly used feature selection techniques for stress detection. Results indicate that QA-based feature subset selection performed equally as that of classical techniques. However, under data uncertainty conditions such as limited training data, the performance of quantum annealing for selecting optimum features remained unaffected, whereas a significant decrease in performance is observed with classical feature selection techniques. Preliminary results show the promise of quantum annealing in optimizing the training phase of a machine learning classifier, especially under data uncertainty conditions.
KW - Feature Selection
KW - Machine Learning
KW - Physiological Signals
KW - Quantum Annealing (QA)
KW - Stress
UR - http://www.scopus.com/inward/record.url?scp=85114963722&partnerID=8YFLogxK
U2 - 10.1109/ISVLSI51109.2021.00089
DO - 10.1109/ISVLSI51109.2021.00089
M3 - Conference contribution
AN - SCOPUS:85114963722
T3 - Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI
SP - 453
EP - 457
BT - Proceedings - 2021 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2021
PB - IEEE Computer Society
T2 - 20th IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2021
Y2 - 7 July 2021 through 9 July 2021
ER -