TY - JOUR
T1 - Quantitative X-Ray spectrum imaging of lead lanthanum zirconate titanate PLZT thin-films
AU - Parish, Chad M.
AU - Brennecka, Geoff L.
AU - Tuttle, Bruce A.
AU - Brewer, Luke N.
PY - 2008/11
Y1 - 2008/11
N2 - The high permittivity of Pb(Zr,Ti)O3 and (Pb,La)(Zr,Ti)O 3 - PZT and PLZT, respectively - thin films and the flexibility of chemical solution deposition (CSD) make solution-derived P(L)ZT thin films extremely attractive for integrated capacitor applications. However, Pb-loss or cation segregation during processing results in degraded properties of the final film. Here, we have extended the use of multivariate statistical analysis (MSA) of energy-dispersive spectroscopy (EDS) spectrum images (SIs) in scanning transmission electron microscopy (STEM) to allow the two-dimensional (2D) quantitative analysis of cation segregation and depletion in P(L)ZT thin films. Quantified STEM-EDS SIs allow high-resolution (< ≈10 nm) quantification of these cation distributions. Surface Pb depletion is found after crystallization and is replenished by a unique post-crystallization PbO overcoat+anneal processes. Zr/Ti and La segregation are found to develop in a decidedly nonplanar fashion during crystallization, especially in PLZT 12/70/30 material, highlighting the need for 2D analysis. Quantitative 2D chemical information is essential for improved processing of homogeneous P(L)ZT films with optimal electrical properties.
AB - The high permittivity of Pb(Zr,Ti)O3 and (Pb,La)(Zr,Ti)O 3 - PZT and PLZT, respectively - thin films and the flexibility of chemical solution deposition (CSD) make solution-derived P(L)ZT thin films extremely attractive for integrated capacitor applications. However, Pb-loss or cation segregation during processing results in degraded properties of the final film. Here, we have extended the use of multivariate statistical analysis (MSA) of energy-dispersive spectroscopy (EDS) spectrum images (SIs) in scanning transmission electron microscopy (STEM) to allow the two-dimensional (2D) quantitative analysis of cation segregation and depletion in P(L)ZT thin films. Quantified STEM-EDS SIs allow high-resolution (< ≈10 nm) quantification of these cation distributions. Surface Pb depletion is found after crystallization and is replenished by a unique post-crystallization PbO overcoat+anneal processes. Zr/Ti and La segregation are found to develop in a decidedly nonplanar fashion during crystallization, especially in PLZT 12/70/30 material, highlighting the need for 2D analysis. Quantitative 2D chemical information is essential for improved processing of homogeneous P(L)ZT films with optimal electrical properties.
UR - http://www.scopus.com/inward/record.url?scp=56749168626&partnerID=8YFLogxK
U2 - 10.1111/j.1551-2916.2008.02708.x
DO - 10.1111/j.1551-2916.2008.02708.x
M3 - Article
AN - SCOPUS:56749168626
SN - 0002-7820
VL - 91
SP - 3690
EP - 3697
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 11
ER -