Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite

Longfei Lin, Alena M. Sheveleva, Ivan da Silva, Christopher M.A. Parlett, Zhimou Tang, Yueming Liu, Mengtian Fan, Xue Han, Joseph H. Carter, Floriana Tuna, Eric J.L. McInnes, Yongqiang Cheng, Luke L. Daemen, Svemir Rudić, Anibal J. Ramirez-Cuesta, Chiu C. Tang, Sihai Yang

Research output: Contribution to journalArticlepeer-review

81 Scopus citations

Abstract

The efficient production of light olefins from renewable biomass is a vital and challenging target to achieve future sustainable chemical processes. Here we report a hetero-atomic MFI-type zeolite (NbAlS-1), over which aqueous solutions of γ-valerolactone (GVL), obtained from biomass-derived carbohydrates, can be quantitatively converted into butenes with a yield of >99% at ambient pressure under continuous flow conditions. NbAlS-1 incorporates simultaneously niobium(v) and aluminium(iii) centres into the framework and thus has a desirable distribution of Lewis and Brønsted acid sites with optimal strength. Synchrotron X-ray diffraction and absorption spectroscopy show that there is cooperativity between Nb(v) and the Brønsted acid sites on the confined adsorption of GVL, whereas the catalytic mechanism for the conversion of the confined GVL into butenes is revealed by in situ inelastic neutron scattering, coupled with modelling. This study offers a prospect for the sustainable production of butene as a platform chemical for the manufacture of renewable materials.

Original languageEnglish
Pages (from-to)86-93
Number of pages8
JournalNature Materials
Volume19
Issue number1
DOIs
StatePublished - Jan 1 2020

Funding

We thank EPSRC (EP/P011632/1), the Royal Society and the University of Manchester for funding. We thank the EPSRC National Service for EPR Spectroscopy at the University of Manchester. A.M.S. thanks the Russian Science Foundation (Grant no. 17\u201373\u201310320) and Royal Society of Chemistry for funding. We are grateful to Oak Ridge National Laboratory (ORNL), the ISIS Facility and Diamond Light Source (DLS) for access to the beamlines VISION, TOSCA and I11, respectively. We acknowledge DLS for the provision of beamtime at B18 (UK Catalysis Hub SP15151, SP24726) and G. Cibin and V. Celorrio for help at B18 beamline. We acknowledge the support of The University of Manchester\u2019s Dalton Cumbrian Facility (DCF), a partner in the National Nuclear User Facility, the EPSRC UK National Ion Beam Centre and the Henry Royce Institute. We recognize R. Edge and K. Warren for their assistance during the 60Co \u03B3-irradiation processes. We thank A. Jentys from the Technical University of Munich and ISIS Facility for the measurement of the INS spectrum of isobutene as part of RB20053 experimental proposal. We thank C. Webb for help with GC\u2013MS, D. Moulding for help with Raman spectroscopy and M. Kibble for help at the TOSCA beamline. The computing resources were made available through the VirtuES and the ICE-MAN projects, funded by the Laboratory Directed Research and Development programme and by Compute and Data Environment for Science (CADES) at ORNL.

Fingerprint

Dive into the research topics of 'Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite'. Together they form a unique fingerprint.

Cite this