@article{f1184901d9d9428a8579282db663abc3,
title = "Quantitative first-principles theory of interface absorption in multilayer heterostructures",
abstract = "The unique chemical bonds and electronic states of interfaces result in optical properties that are different from those of the constituting bulk materials. In the nanoscale regime, the interface effects can be dominant and impact the optical response of devices. Using density functional theory (DFT), the interface effects can be calculated, but DFT is computationally limited to small systems. We describe a method to combine DFT with macroscopic methodologies to extract the interface effect on absorption in a consistent and quantifiable manner. The extracted interface effects are an independent parameter and can be applied to more complicated systems. We demonstrate, using NiSi2/Si heterostructures, that by varying the relative volume fractions of interface and bulk, we can tune the spectral range of the heterostructure absorption.",
author = "Hachtel, {Jordan A.} and Ritesh Sachan and Rohan Mishra and Pantelides, {Sokrates T.}",
note = "Publisher Copyright: {\textcopyright} 2015 AIP Publishing LLC.",
year = "2015",
month = aug,
day = "22",
doi = "10.1063/1.4930069",
language = "English",
volume = "107",
journal = "Applied Physics Letters",
issn = "0003-6951",
publisher = "American Institute of Physics",
number = "9",
}