Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy

Anton V. Ievlev, Stephen Jesse, Thomas J. Cochell, Raymond R. Unocic, Vladimir A. Protopopescu, Sergei V. Kalinin

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

Recent advances in liquid cell (scanning) transmission electron microscopy (S)TEM has enabled in situ nanoscale investigations of controlled nanocrystal growth mechanisms. Here, we experimentally and quantitatively investigated the nucleation and growth mechanisms of Pt nanostructures from an aqueous solution of K2PtCl6. Averaged statistical, network, and local approaches have been used for the data analysis and the description of both collective particles dynamics and local growth features. In particular, interaction between neighboring particles has been revealed and attributed to reduction of the platinum concentration in the vicinity of the particle boundary. The local approach for solving the inverse problem showed that particles dynamics can be simulated by a stationary diffusional model. The obtained results are important for understanding nanocrystal formation and growth processes and for optimization of synthesis conditions.

Original languageEnglish
Pages (from-to)11784-11791
Number of pages8
JournalACS Nano
Volume9
Issue number12
DOIs
StatePublished - Oct 28 2015

Keywords

  • (scanning) transmission electron microscopy
  • inverse problem
  • local kinetics
  • nucleation and growth
  • platinum nanoparticles

Fingerprint

Dive into the research topics of 'Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy'. Together they form a unique fingerprint.

Cite this