TY - GEN
T1 - Progress in creating stabilized gas layers in flowing liquid mercury
AU - Wendel, Mark
AU - Felde, David
AU - Riemer, Bernrd
AU - West, David
AU - D'Urso, Brian
AU - Ibrahim, Ashraf
PY - 2009
Y1 - 2009
N2 - The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering the beam "window", through which the high-energy proton beam passes, with a protective layer of gas. The difficulty lies in establishing a stable gas/liquid interface that is oriented vertically with the window and holds up to the strong buoyancy force and the turbulent mercury flow field. Three approaches to establishing the gas wall have been investigated in isothermal mercury/gas testing on a prototypical geometry and flow: (1) free gas layer approach, (2) porous wall approach, and (3) surface-modified approach. The latter two of these approaches show success in that a stabilized gas layer is produced. Both of these successful approaches capitalize on the high surface energy of liquid mercury by increasing the surface area of the solid wall, thus increasing gas hold up at the wall. In this paper, a summary of these experiments and findings is presented as well as a description of the path forward toward incorporating the stabilized gas layer approach into a feasible gas/mercury SNS target design.
AB - The Spallation Neutron Source (SNS) facility in Oak Ridge, Tennessee uses a liquid mercury target that is bombarded with protons to produce a pulsed neutron beam for materials research and development. In order to mitigate expected cavitation damage erosion (CDE) of the containment vessel, a two-phase flow arrangement of the target has been proposed and was earlier proven to be effective in significantly reducing CDE in non-prototypical target bodies. This arrangement involves covering the beam "window", through which the high-energy proton beam passes, with a protective layer of gas. The difficulty lies in establishing a stable gas/liquid interface that is oriented vertically with the window and holds up to the strong buoyancy force and the turbulent mercury flow field. Three approaches to establishing the gas wall have been investigated in isothermal mercury/gas testing on a prototypical geometry and flow: (1) free gas layer approach, (2) porous wall approach, and (3) surface-modified approach. The latter two of these approaches show success in that a stabilized gas layer is produced. Both of these successful approaches capitalize on the high surface energy of liquid mercury by increasing the surface area of the solid wall, thus increasing gas hold up at the wall. In this paper, a summary of these experiments and findings is presented as well as a description of the path forward toward incorporating the stabilized gas layer approach into a feasible gas/mercury SNS target design.
UR - https://www.scopus.com/pages/publications/69949114057
U2 - 10.1115/FEDSM2008-55050
DO - 10.1115/FEDSM2008-55050
M3 - Conference contribution
AN - SCOPUS:69949114057
SN - 9780791848418
T3 - 2008 Proceedings of the ASME Fluids Engineering Division Summer Conference, FEDSM 2008
SP - 23
EP - 27
BT - 2008 Proceedings of the ASME Fluids Engineering Division Summer Conference, FEDSM 2008
T2 - 2008 ASME Fluids Engineering Division Summer Conference, FEDSM 2008
Y2 - 10 August 2008 through 14 August 2008
ER -