Abstract
Described here are the results from the profiling of the proteins arginine vasopressin (AVP) and adrenocorticotropic hormone (ACTH) from normal human pituitary gland and pituitary adenoma tissue sections, using a fully automated droplet-based liquid-microjunction surface-sampling-HPLC- ESI-MS-MS system for spatially resolved sampling, HPLC separation, and mass spectrometric detection. Excellent correlation was found between the protein distribution data obtained with this method and data obtained with matrix-assisted laser desorption/ionization (MALDI) chemical imaging analyses of serial sections of the same tissue. The protein distributions correlated with the visible anatomic pattern of the pituitary gland. AVP was most abundant in the posterior pituitary gland region (neurohypophysis), and ATCH was dominant in the anterior pituitary gland region (adenohypophysis). The relative amounts of AVP and ACTH sampled from a series of ACTH-secreting and non-secreting pituitary adenomas correlated with histopathological evaluation. ACTH was readily detected at significantly higher levels in regions of ACTHsecreting adenomas and in normal anterior adenohypophysis compared with non-secreting adenoma and neurohypophysis. AVP was mostly detected in normal neurohypophysis, as expected. This work reveals that a fully automated droplet-based liquid-microjunction surface-sampling system coupled to HPLC-ESI-MS-MS can be readily used for spatially resolved sampling, separation, detection, and semi-quantitation of physiologically-relevant peptide and protein hormones, including AVP and ACTH, directly from human tissue. In addition, the relative simplicity, rapidity, and specificity of this method support the potential of this basic technology, with further advancement, for assisting surgical decision-making.
Original language | English |
---|---|
Pages (from-to) | 5989-5998 |
Number of pages | 10 |
Journal | Analytical and Bioanalytical Chemistry |
Volume | 407 |
Issue number | 20 |
DOIs | |
State | Published - Aug 2017 |
Funding
This project was supported by AB Sciex through a Cooperative Research and Development Agreement (CRADA NFE-10- 02966). The API 4000 used in this work was provided on loan from AB Sciex as part of the CRADA. NYRA was supported by the Daniel E. Ponton Fund for the Neurosciences, the DFCI Pediatric Low-Grade Astrocytoma (PLGA) Program, and the NIH Director’s New Innovator Award (Grant 1DP2OD007383-01). The authors would like to thank Aaron Bickel, James Glick, and Jimmy Flarakos from Novartis Institutes for Biomedical Research (Cambridge, MA) for their valuable help in 3D printing of the custom tray. ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. Acknowledgments This project was supported by AB Sciex through a Cooperative Research and Development Agreement (CRADA NFE-10-02966). The API 4000 used in this work was provided on loan from AB Sciex as part of the CRADA. NYRA was supported by the Daniel E. Ponton Fund for the Neurosciences, the DFCI Pediatric Low-Grade Astrocytoma (PLGA) Program, and the NIH Director’s New Innovator Award (Grant 1DP2OD007383‐01). The authors would like to thank Aaron Bickel, James Glick, and Jimmy Flarakos from Novartis Institutes for Biomedical Research (Cambridge, MA) for their valuable help in 3D printing of the custom tray. ORNL is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy. gov/downloads/doe-public-access-plan).
Keywords
- AVP (vasopressin)
- Adrenocorticotropic hormone (ACTH)
- Autosampler
- Droplet-based liquid extraction
- Human pituitary
- Liquid microjunction
- Pituitary adenoma
- Protein
- Spatial distribution