Production of intermediate-mass and heavy nuclei

F. K. Thielemann, C. Fröhlich, R. Hirschi, M. Liebendörfer, I. Dillmann, D. Mocelj, T. Rauscher, G. Martinez-Pinedo, K. Langanke, K. Farouqi, K. L. Kratz, B. Pfeiffer, I. Panov, D. K. Nadyozhin, S. Blinnikov, E. Bravo, W. R. Hix, P. Höflich, N. T. Zinner

Research output: Contribution to journalShort surveypeer-review

17 Scopus citations

Abstract

Nucleosynthesis is the science related to all astrophysical processes which are responsible for the abundances of the elements and their isotopes in the universe. The astrophysical sites are the big bang and stellar objects. The working of nucleosynthesis processes is presented in a survey of events which act as abundance sources. For intermediate-mass and heavy elements, these are stellar evolution, type Ia and core collapse supernovae as well as hypernovae. We discuss successes and failures of existing processes and possible solutions via new (hitherto unknown) processes. Finally an analysis of their role is given in the puzzle to explain the evolution of the elemental and isotopic compositions found in galaxies, and especially the mixture found in the solar system. Different timescales due to the progenitor mass dependence of the endpoints of stellar evolution (type II supernova explosions - SNe II vs. planetary nebulae) or single vs. binary stellar systems (the latter being responsible for novae, type Ia supernovae - SNe Ia, or X-ray bursts) are the keys to understand galactic evolution. At very early times, the role of explosion energies of events, polluting pristine matter with a composition originating only from the big bang, might also play a role. We also speculate on the role of very massive stars not undergoing SN II explosions but rather causing "hypernovae" after the formation of a central black hole via core collapse.

Original languageEnglish
Pages (from-to)74-93
Number of pages20
JournalProgress in Particle and Nuclear Physics
Volume59
Issue number1
DOIs
StatePublished - Jul 2007

Keywords

  • Chemical evolution of galaxies
  • Core collapse supernovae
  • Fission
  • Low metallicity stars
  • Neutrino-nucleus interactions
  • Nuclear reactions
  • Nuclear structure
  • Nucleosynthesis
  • Si-burning
  • Stellar evolution
  • Type Ia supernovae
  • p-process
  • r-process
  • ν p-process

Fingerprint

Dive into the research topics of 'Production of intermediate-mass and heavy nuclei'. Together they form a unique fingerprint.

Cite this