Abstract
In 1957 Glenn T. Seaborg conceived and advocated for the construction of the High Flux Isotope Reactor (HFIR) and the Transuranium Processing Plant (since then renamed the Radiochemical Engineering Development Center, or REDC) at Oak Ridge National Laboratory. Heavily shielded hot cells, glove boxes, and laboratories allow recovery of transuranium elements produced in substantial quantities. Seaborg’s vision of HFIR and REDC producing milligram quantities of berkelium, californium, and einsteinium has been fulfilled beginning in 1966 through May 2019 with 78 production campaigns yielding a cumulative totals of 1.2 g of 249Bk, 10.2 g of 252Cf, 39 mg of 253Es, and 15 pg of 257Fm. Notably, 252Cf is a neutron source used in many industrial applications including oil exploration; process control systems for the cement industry, coal analysis, and power production; sources to start nuclear reactors and perform nondestructive materials analyses; homeland security and national defense detection devices; and medical research. Isotopes made available through transplutonium production at HFIR/REDC have enabled scientists to study the nuclear properties and reactions, chemical properties, optical properties, and solid-state properties of transplutonium elements. Long-lived isotopes have served as targets in heavy ion accelerators to produce heavier elements leading to the discovery of 104Rf, 105Db, 106Sg, 113Nh, 114Fl, 115Mc, 116Lv, 117Ts, and 118Og. This paper reviews the evolution of the processing flowsheets to produce, separate, and purify transplutonium isotopes, which have evolved over 50 years of operation at HFIR and REDC, and summarizes directions of future work to improve the efficiency of the production operations.
Original language | English |
---|---|
Pages (from-to) | 737-746 |
Number of pages | 10 |
Journal | Radiochimica Acta |
Volume | 108 |
Issue number | 9 |
DOIs | |
State | Published - Sep 1 2020 |
Funding
This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The authors thank the staff members at HFIR and REDC for their diligence in producing and separating the transplutonium isotopes. The authors also acknowledge support from the US DOE Office of Science, Office of Nuclear Physics, Isotope Program, and Low Energy Nuclear Physics Program.
Funders | Funder number |
---|---|
U.S. Department of Energy | DE-AC05-00OR22725 |
Keywords
- Actinides
- Berkelium
- Californium
- Einsteinium
- Separations chemistry
- Transplutonium