Abstract
Additive manufacturing (AM) presents a new design paradigm for the manufacture of engineering materials through the layer-by-layer approach combined with welding theory. In the instance of difficult to process materials such as tungsten and other refractory metals, AM offers an opportunity for radical redesign of critical components for next-generation energy technologies including fusion. In this work, electron beam powder bed fusion (EB-PBF) is applied to process pure tungsten to study the influence of process parameters on the defect density of the material. An in-situ image analysis algorithm is applied to pure tungsten for the first time, and is used to visualize the defect structure in AM tungsten. Finally, a cracking mechanism for AM tungsten is proposed, and suggestions for suppression of cracks in pure tungsten are offered.
Original language | English |
---|---|
Article number | 153041 |
Journal | Journal of Nuclear Materials |
Volume | 555 |
DOIs | |
State | Published - Nov 2021 |
Funding
Notice of Copyright. This manuscript has been authored by UT-Battelle, LLC under Contract no. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).Research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office, and by the US Department of Energy, Office of Fusion Energy Sciences, under contract DE-AC05-00OR22725 with UT-Battelle LLC and performed in partiality at the Oak Ridge National Laboratory's Manufacturing Demonstration Facility, an Office of Energy Efficiency and Renewable Energy user facility. Notice of Copyright . This manuscript has been authored by UT-Battelle, LLC under Contract no. DE-AC05-00OR22725 with the U.S. Department of Energy . The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). Research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office, and by the US Department of Energy , Office of Fusion Energy Sciences, under contract DE-AC05-00OR22725 with UT-Battelle LLC and performed in partiality at the Oak Ridge National Laboratory’s Manufacturing Demonstration Facility, an Office of Energy Efficiency and Renewable Energy user facility.
Keywords
- Additive manufacturing
- Electron beam melting
- Pure tungsten
- Refractory metal