Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research

Md Mahmudul Hassan, Guoliang Yuan, Jin Gui Chen, Gerald A. Tuskan, Xiaohan Yang

Research output: Contribution to journalReview articlepeer-review

34 Scopus citations

Abstract

Many applications in plant biology requires editing genomes accurately including correcting point mutations, incorporation of single-nucleotide polymorphisms (SNPs), and introduction of multinucleotide insertion/deletions (indels) into a predetermined position in the genome. These types of modifications are possible using existing genome-editing technologies such as the CRISPR-Cas systems, which require induction of double-stranded breaks in the target DNA site and the supply of a donor DNA molecule that contains the desired edit sequence. However, low frequency of homologous recombination in plants and difficulty of delivering the donor DNA molecules make this process extremely inefficient. Another kind of technology known as base editing can perform precise editing; however, only certain types of modifications can be obtained, e.g., C/G-to-T/A and A/T-to-G/C. Recently, a new type of genome-editing technology, referred to as “prime editing,” has been developed, which can achieve various types of editing such as any base-to-base conversion, including both transitions (C→T, G→A, A→G, and T→C) and transversion mutations (C→A, C→G, G→C, G→T, A→C, A→T, T→A, and T→G), as well as small indels without the requirement for inducing double-stranded break in the DNA. Because prime editing has wide flexibility to achieve different types of edits in the genome, it holds a great potential for developing superior crops for various purposes, such as increasing yield, providing resistance to various abiotic and biotic stresses, and improving quality of plant product. In this review, we describe the prime editing technology and discuss its limitations and potential applications in plant biology research.

Original languageEnglish
Article number9350905
JournalBioDesign Research
Volume2020
DOIs
StatePublished - 2020

Funding

The writing of this manuscript is supported by the Center for Bioenergy Innovation (CBI), a U.S. Department of Energy (DOE) Research Center supported by the Office of Science, Office of Biological and Environmental Research (OBER), the Laboratory Directed Research and Development (LDRD) program of Oak Ridge National Laboratory, and the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Plant-Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract Number DEAC05-00OR22725. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy .gov/downloads/doe-public-access-plan). The writing of this manuscript is supported by the Center for Bioenergy Innovation (CBI), a U.S. Department of Energy (DOE) Research Center supported by the Office of Science, Office of Biological and Environmental Research (OBER), the Laboratory Directed Research and Development (LDRD) program of Oak Ridge National Laboratory, and the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Plant-Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract Number DE-AC05-00OR22725. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy .gov/downloads/doe-public-access-plan).

FundersFunder number
DOE Public Access Plan
United States Government
U.S. Department of Energy
Office of Science
Biological and Environmental ResearchDE-AC05-00OR22725
Oak Ridge National LaboratoryDEAC05-00OR22725
Center for Bioenergy Innovation

    Fingerprint

    Dive into the research topics of 'Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research'. Together they form a unique fingerprint.

    Cite this