Pressurized creep-fatigue testing of alloy 617 using simplified model test method

Yanli Wang, Robert I. Jetter, T. L. Sham

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

The Simplified Model Test (SMT) is an alternative approach to determine cyclic life at elevated temperature and avoids parsing the damage into creep and fatigue components. The Elastic-Perfectly Plastic (EPP) combined integrated creepfatigue damage evaluation approach incorporates the SMT data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and to eliminate the requirement for stress classification as in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The conceptual basis of the SMT approach is that if the effects of plasticity, creep and strain redistribution in the SMT specimen result in a stress-strain hysteresis loop that envelopes the hysteresis loop at the peak strain location in the component, then the SMT results can be used to assess the cyclic damage in the component. The original SMT concept (Jetter, 1998) considered that the effects of sustained primary stress loading could be safely neglected because the allowable local stress and strain levels were much higher than the allowable sustained primary stress levels. This key assumption requires experimental verification. The influence of the internal pressure on SMT creep-fatigue life is demonstrated and the effect of primary load on the SMT design approach is discussed.

Original languageEnglish
Title of host publicationCodes and Standards
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857915
DOIs
StatePublished - 2017
EventASME 2017 Pressure Vessels and Piping Conference, PVP 2017 - Waikoloa, United States
Duration: Jul 16 2017Jul 20 2017

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume1B-2017
ISSN (Print)0277-027X

Conference

ConferenceASME 2017 Pressure Vessels and Piping Conference, PVP 2017
Country/TerritoryUnited States
CityWaikoloa
Period07/16/1707/20/17

Bibliographical note

Publisher Copyright:
© 2017 ASME.

Fingerprint

Dive into the research topics of 'Pressurized creep-fatigue testing of alloy 617 using simplified model test method'. Together they form a unique fingerprint.

Cite this