TY - JOUR
T1 - Pressure Tuning the Jahn-Teller Transition Temperature in NaNiO2
AU - Nagle-Cocco, Liam A.V.
AU - Bull, Craig L.
AU - Ridley, Christopher J.
AU - Dutton, Siân E.
N1 - Publisher Copyright:
© 2022 American Chemical Society.
PY - 2022/3/14
Y1 - 2022/3/14
N2 - NaNiO2 is a layered material consisting of alternating layers of NaO6 and Jahn-Teller-active NiO6 edge-sharing octahedra. At ambient pressure, it undergoes a broad phase transition from a monoclinic to rhombohedral structure between 465 and 495 K, associated with the loss of long-range orbital ordering. In this work, we present the results of a neutron powder diffraction study on powdered NaNiO2 as a function of pressure and temperature from ambient pressure to ∼5 GPa between 290 and 490 K. The 290 and 460 K isothermal compressions remained in the monoclinic phase up to the maximum pressures studied, whereas the 490 K isotherm was mixed-phase throughout. The unit-cell volume was fitted to a second-order Birch-Murnaghan equation of state, where B = 119.6(5) GPa at 290 K. We observe at 490 K that the fraction of the Jahn-Teller-distorted phase increases with pressure, from 67.8(6)% at 0.71(2) GPa to 80.2(9)% at 4.20(6) GPa. Using this observation, in conjunction with neutron diffraction measurements at 490 K on removing pressure from 5.46(9) to 0.342(13) GPa, we show that the Jahn-Teller transition temperature increases with pressure. Our results are used to present a structural pressure-temperature phase diagram for NaNiO2. To the best of our knowledge, this is the first diffraction study of the effect of pressure on the Jahn-Teller transition temperature in materials with edge-sharing Jahn-Teller-distorted octahedra and the first variable-pressure study focusing on the Jahn-Teller distortion in a nickelate.
AB - NaNiO2 is a layered material consisting of alternating layers of NaO6 and Jahn-Teller-active NiO6 edge-sharing octahedra. At ambient pressure, it undergoes a broad phase transition from a monoclinic to rhombohedral structure between 465 and 495 K, associated with the loss of long-range orbital ordering. In this work, we present the results of a neutron powder diffraction study on powdered NaNiO2 as a function of pressure and temperature from ambient pressure to ∼5 GPa between 290 and 490 K. The 290 and 460 K isothermal compressions remained in the monoclinic phase up to the maximum pressures studied, whereas the 490 K isotherm was mixed-phase throughout. The unit-cell volume was fitted to a second-order Birch-Murnaghan equation of state, where B = 119.6(5) GPa at 290 K. We observe at 490 K that the fraction of the Jahn-Teller-distorted phase increases with pressure, from 67.8(6)% at 0.71(2) GPa to 80.2(9)% at 4.20(6) GPa. Using this observation, in conjunction with neutron diffraction measurements at 490 K on removing pressure from 5.46(9) to 0.342(13) GPa, we show that the Jahn-Teller transition temperature increases with pressure. Our results are used to present a structural pressure-temperature phase diagram for NaNiO2. To the best of our knowledge, this is the first diffraction study of the effect of pressure on the Jahn-Teller transition temperature in materials with edge-sharing Jahn-Teller-distorted octahedra and the first variable-pressure study focusing on the Jahn-Teller distortion in a nickelate.
UR - http://www.scopus.com/inward/record.url?scp=85126372728&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.1c03345
DO - 10.1021/acs.inorgchem.1c03345
M3 - Article
C2 - 35238545
AN - SCOPUS:85126372728
SN - 0020-1669
VL - 61
SP - 4312
EP - 4321
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 10
ER -