Abstract
Neutron crystallography is used to locate H atoms in biological materials and can distinguish between negatively scattering hydrogen-substituted and positively scattering deuterium-substituted positions in isomorphous neutron structures. Recently, Hauptman & Langs (2003; Acta Cryst. A59, 250-254) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering H atoms in the structure. Selective-labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of H to D atoms can be precisely controlled. Methyl selective-labeling protocols were applied to introduce (1H-δ methyl)-leucine and (1H-γ methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here, the production, crystallization and preliminary neutron analysis of a selectively CH 3-protonated deuterated PfRd sample, which provided a high-quality neutron data set that extended to 1.75 Å resolution using the new LADI-III instrument at the Institut Laue-Langevin, are reported. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of H atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure.
Original language | English |
---|---|
Pages (from-to) | 537-540 |
Number of pages | 4 |
Journal | Acta Crystallographica Section F: Structural Biology and Crystallization Communications |
Volume | 64 |
Issue number | 6 |
DOIs | |
State | Published - 2008 |
Keywords
- Deuteration
- Neutron diffraction
- Rubredoxin
- Selective labeling