Abstract
The liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source has proven to be an effective analysis tool for making uranium isotope ratio measurements when coupled to high-resolution mass spectrometers, such as the Orbitrap. While previous studies have shown the capabilities of the LS-APGD for isotope ratio determination, a systematic evaluation of the measurement uncertainty of the technique has not been conducted. To this end, the International Standards Organizations (ISO) guidelines to the expression of uncertainty in measurement (GUM analysis) have been applied to generate an uncertainty budget. Presented here, a preliminary assessment derived from the GUM analysis was performed. The uncertainty in the instrument blank determination has been identified as a primary factor contributing to measurement uncertainty for the LS-APGD-Orbitrap method. These findings for the specific test case of uranium isotopic analysis will be invaluable in applications across the breadth of isotope ratio mass spectrometry performed on this unique instrumental platform. Graphical abstract: [Figure not available: see fulltext.].
Original language | English |
---|---|
Pages (from-to) | 2875-2886 |
Number of pages | 12 |
Journal | Journal of Radioanalytical and Nuclear Chemistry |
Volume | 332 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2023 |
Funding
This work was supported by the Department of Energy’s National Nuclear Security Administration under contract DE-AC05-000R22725 with UT-Battelle, LLC. Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy under contract DE-AC-05-000R22725. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). This work was supported by the Department of Energy’s National Nuclear Security Administration under contract DE-AC05-000R22725 with UT-Battelle, LLC. Oak Ridge National Laboratory is managed by UT-Battelle for the Department of Energy under contract DE-AC-05-000R22725. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan ).
Keywords
- GUM
- Isotope ratios
- Nuclear safeguards
- Uncertainty evaluation
- Uranium