TY - JOUR
T1 - Precision Atomistic Structures of Actinium-/Radium-/Barium-Doped Lanthanide Nanoconstructs for Radiotherapeutic Applications
AU - Goswami, Monojoy
AU - Toro-González, Miguel
AU - Moon, Jisue
AU - Davern, Sandra
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society
PY - 2024
Y1 - 2024
N2 - Lanthanide vanadate (LnVO4) nanoconstructs have generated considerable interest in radiotherapeutic applications as a medium for nanoscale-targeted drug delivery. For cancer treatment, LnVO4 nanoconstructs have shown promise in encapsulating and retaining radionuclides that emit alpha-particles. In this work, we examined the structure formation of LnVO4 nanoconstructs doped with actinium (Ac) and radium (Ra), both experimentally and using large-scale atomistic molecular dynamics simulations. LnVO4 nanoconstructs were synthesized via a precipitation method in aqueous media. The reaction conditions and elemental compositions were varied to control the structure, fluorescence properties, and size distribution of the LnVO4 nanoconstructs. LnVO4 nanoconstructs were characterized by X-ray diffraction, Raman spectroscopy, and fluorescence spectroscopy. Molecular dynamics simulations were performed to obtain a fundamental understanding of the structure-property relationship between radionuclides and LnVO4 nanoconstructs at the atomic length scale. Molecular dynamics simulations with well-established force field (FF) parameters show that Ra atoms tend to distribute across the nanoconstructs’ surface in a broader coordination shell, while the Ac atoms are arranged inside a smaller coordination shell within the nanocluster. The Ba atoms prefer to self-assemble around the surface. These theoretical/simulation predictions of the atomistic structures and an understanding of the relationship between radionuclides and LnVO4 nanoconstructs at the atomic scale are important because they provide design principles for the future development of nanoconstructs for targeted radionuclide delivery.
AB - Lanthanide vanadate (LnVO4) nanoconstructs have generated considerable interest in radiotherapeutic applications as a medium for nanoscale-targeted drug delivery. For cancer treatment, LnVO4 nanoconstructs have shown promise in encapsulating and retaining radionuclides that emit alpha-particles. In this work, we examined the structure formation of LnVO4 nanoconstructs doped with actinium (Ac) and radium (Ra), both experimentally and using large-scale atomistic molecular dynamics simulations. LnVO4 nanoconstructs were synthesized via a precipitation method in aqueous media. The reaction conditions and elemental compositions were varied to control the structure, fluorescence properties, and size distribution of the LnVO4 nanoconstructs. LnVO4 nanoconstructs were characterized by X-ray diffraction, Raman spectroscopy, and fluorescence spectroscopy. Molecular dynamics simulations were performed to obtain a fundamental understanding of the structure-property relationship between radionuclides and LnVO4 nanoconstructs at the atomic length scale. Molecular dynamics simulations with well-established force field (FF) parameters show that Ra atoms tend to distribute across the nanoconstructs’ surface in a broader coordination shell, while the Ac atoms are arranged inside a smaller coordination shell within the nanocluster. The Ba atoms prefer to self-assemble around the surface. These theoretical/simulation predictions of the atomistic structures and an understanding of the relationship between radionuclides and LnVO4 nanoconstructs at the atomic scale are important because they provide design principles for the future development of nanoconstructs for targeted radionuclide delivery.
KW - lanthanide
KW - molecular dynamics simulations
KW - nanoparticle
KW - radionuclide
KW - X-ray diffraction
UR - http://www.scopus.com/inward/record.url?scp=85197137242&partnerID=8YFLogxK
U2 - 10.1021/acsnano.3c13213
DO - 10.1021/acsnano.3c13213
M3 - Article
AN - SCOPUS:85197137242
SN - 1936-0851
JO - ACS Nano
JF - ACS Nano
ER -