Power and particle handling and wall conditioning in NCSX

P. K. Mioduszewski, L. W. Owen, D. A. Spong, M. E. Fenstermacher, A. E. Koniges, T. D. Rognlien, M. V. Umansky, A. Grossman, H. W. Kugel

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Plasma boundary control in stellarators has been shown to be very effective in improving plasma performance and, accordingly, is an important element from the very beginning of the National Compact Stellarator Experiment (NCSX) design. Studies of the magnetic field topology outside the last closed magnetic surface (LCMS) indicate the possibility of many toroidal revolutions of field lines launched within a couple of centimeters of the LCMS. Field line connection lengths, typically in the order of 100 m, should be sufficient to allow for the necessary separation of divertor and separatrix temperatures. In the top and bottom of the bean-shaped cross section (toroidal angle Φ = 0), a field expansion of >5 is observed, which will help to spread out the heat flux on limiters and divertor plates. Plasma-facing components (PFCs) will be developed systematically according to our respective understanding of the NCSX boundary; the phased PFC development will start out with a set of limiters and has the eventual goal to develop a divertor with all the benefits of impurity and neutrals control. Neutrals calculations have been stoned to investigate the effect of neutrals penetration at various plasma cross sections, especially at the location of Φ = 0 deg. Advanced wall conditioning techniques, as employed in other major fusion devices, will be incorporated in the NCSX operation.

Original languageEnglish
Pages (from-to)238-260
Number of pages23
JournalFusion Science and Technology
Volume51
Issue number2
DOIs
StatePublished - Feb 2007

Keywords

  • Particle control
  • Power handling
  • Stellarators

Fingerprint

Dive into the research topics of 'Power and particle handling and wall conditioning in NCSX'. Together they form a unique fingerprint.

Cite this