Pore–Scale Numerical Investigations of the Impact of Mineral Dissolution and Transport in Naturally Fractured Systems During CO2–Enriched Brine Injection

Jiahui You, Kyung Jae Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

CO2 storage and sequestration are regarded as an effective approach to mitigate greenhouse gas emissions. While injecting an enormous amount of CO2 into carbonate–rich aquifers, CO2 dissolves in the formation brine under the large pressure, and the subsequently formed CO2–enriched brine reacts with the calcite. Reaction–induced changes in pore structure and fracture geometry alter the porosity and permeability, giving rise to concerns of CO2storage capacity and security. Especially in the reservoir or aquifer with natural fractures, the fractures provide a highly permeable pathways for fluid flow. This study aims to analyze the acid–rock interaction and subsequent permeability evolution in the systems with complex fracture configurations during CO2 injection by implementing a pore–scale DBS reactive transport model. The model has been developed by expanding the functionality of OpenFOAM, which is an open–source code for computational fluid dynamics. A series of partial differential equations are discretized by applying the Finite Volume Method (FVM) and sequentially solved. Different fracture configurations in terms of fracture length, density, connection, and mineral components have been considered to investigate their impacts on the dynamic porosity–permeability relationship, dissolution rate, and reactant transport characteristics during CO2 storage. The investigation revealed several interesting findings. We found that calcium (Ca) concentration was low in the poorly connected area at the initial time. As CO2–enriched brine saturated the system and reacted with calcite, Ca started being accumulated in the system. However, Ca barely flowed out of the poor–connected area, and the concentration became high. Lengths of branches mainly influenced the dissolution rates, while they had slight impacts on the porosity–permeability relationship. While fracture connectivity had an apparent influence on the porosity–permeability relationship, it showed a weak relevance on the dissolution rate. These microscopic insights can help enhance the CO2 sealing capacity and guarantee environmental security.

Original languageEnglish
Title of host publicationSociety of Petroleum Engineers - SPE International Conference on Oilfield Chemistry, OCC 2021
PublisherSociety of Petroleum Engineers (SPE)
ISBN (Electronic)9781613997468
DOIs
StatePublished - 2021
Externally publishedYes
Event2021 SPE International Conference on Oilfield Chemistry, OCC 2021 - The Woodlands, United States
Duration: Dec 6 2021Dec 7 2021

Publication series

NameProceedings - SPE International Symposium on Oilfield Chemistry
Volume2021-December
ISSN (Print)1046-1779

Conference

Conference2021 SPE International Conference on Oilfield Chemistry, OCC 2021
Country/TerritoryUnited States
CityThe Woodlands
Period12/6/2112/7/21

Fingerprint

Dive into the research topics of 'Pore–Scale Numerical Investigations of the Impact of Mineral Dissolution and Transport in Naturally Fractured Systems During CO2–Enriched Brine Injection'. Together they form a unique fingerprint.

Cite this