TY - GEN
T1 - Plug-and-Play priors for model based reconstruction
AU - Venkatakrishnan, Singanallur V.
AU - Bouman, Charles A.
AU - Wohlberg, Brendt
PY - 2013
Y1 - 2013
N2 - Model-based reconstruction is a powerful framework for solving a variety of inverse problems in imaging. In recent years, enormous progress has been made in the problem of denoising, a special case of an inverse problem where the forward model is an identity operator. Similarly, great progress has been made in improving model-based inversion when the forward model corresponds to complex physical measurements in applications such as X-ray CT, electron-microscopy, MRI, and ultrasound, to name just a few. However, combining state-of-the-art denoising algorithms (i.e., prior models) with state-of-the-art inversion methods (i.e., forward models) has been a challenge for many reasons. In this paper, we propose a flexible framework that allows state-of-the-art forward models of imaging systems to be matched with state-of-the-art priors or denoising models. This framework, which we term as Plug-and-Play priors, has the advantage that it dramatically simplifies software integration, and moreover, it allows state-of-the-art denoising methods that have no known formulation as an optimization problem to be used. We demonstrate with some simple examples how Plug-and-Play priors can be used to mix and match a wide variety of existing denoising models with a tomographic forward model, thus greatly expanding the range of possible problem solutions.
AB - Model-based reconstruction is a powerful framework for solving a variety of inverse problems in imaging. In recent years, enormous progress has been made in the problem of denoising, a special case of an inverse problem where the forward model is an identity operator. Similarly, great progress has been made in improving model-based inversion when the forward model corresponds to complex physical measurements in applications such as X-ray CT, electron-microscopy, MRI, and ultrasound, to name just a few. However, combining state-of-the-art denoising algorithms (i.e., prior models) with state-of-the-art inversion methods (i.e., forward models) has been a challenge for many reasons. In this paper, we propose a flexible framework that allows state-of-the-art forward models of imaging systems to be matched with state-of-the-art priors or denoising models. This framework, which we term as Plug-and-Play priors, has the advantage that it dramatically simplifies software integration, and moreover, it allows state-of-the-art denoising methods that have no known formulation as an optimization problem to be used. We demonstrate with some simple examples how Plug-and-Play priors can be used to mix and match a wide variety of existing denoising models with a tomographic forward model, thus greatly expanding the range of possible problem solutions.
UR - http://www.scopus.com/inward/record.url?scp=84897731193&partnerID=8YFLogxK
U2 - 10.1109/GlobalSIP.2013.6737048
DO - 10.1109/GlobalSIP.2013.6737048
M3 - Conference contribution
AN - SCOPUS:84897731193
SN - 9781479902484
T3 - 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings
SP - 945
EP - 948
BT - 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings
T2 - 2013 1st IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013
Y2 - 3 December 2013 through 5 December 2013
ER -