Abstract
The complex organic polymer, lignin, abundant in plants, prevents the efficient extraction of sugars from the cell walls that is required for large scale biofuel production. Because lignin removal is crucial in overcoming this challenge, the question of how the nanoscale properties of the plant cell ultrastructure correlate with delignification processes is important. Here, we report how distinct molecular domains can be identified and how physical quantities of adhesion energy, elasticity, and plasticity undergo changes, and whether such quantitative observations can be used to characterize delignification. By chemically processing biomass, and employing nanometrology, the various stages of lignin removal are shown to be distinguished through the observed morphochemical and nanomechanical variations. Such spatially resolved correlations between chemistry and nanomechanics during deconstruction not only provide a better understanding of the cell wall architecture but also is vital for devising optimum chemical treatments.
Original language | English |
---|---|
Article number | 152 |
Journal | Scientific Reports |
Volume | 7 |
Issue number | 1 |
DOIs | |
State | Published - 2017 |
Funding
We would like to thank David Graham at ORNL for reviewing the manuscript, and Damien Chaudanson at CINaM for SEM images. This work was sponsored by the BioEnergy Science Center (BESC) of the Oak Ridge National Laboratory (ORNL). The BESC is a US Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. ORNL is managed by UT-Battelle, LLC, for the US DOE under contract DE-AC05-00OR22725.
Funders | Funder number |
---|---|
BioEnergy Science Center | |
DOE Office of Science | |
Office of Biological and Environmental Research | |
US Department of Energy | |
U.S. Department of Energy | DE-AC05-00OR22725 |
Oak Ridge National Laboratory |