Plasmonic Trace Sensing below the Photon Shot Noise Limit

Raphael C. Pooser, Benjamin Lawrie

Research output: Contribution to journalArticlepeer-review

97 Scopus citations

Abstract

Plasmonic sensors are important detectors of biochemical trace compounds, but those that utilize optical readout are approaching their absolute limits of detection as defined by the Heisenberg uncertainty principle in both differential intensity and phase readout. However, the use of more general minimum uncertainty states in the form of squeezed light can push the noise floor in these sensors below the shot noise limit (SNL) in one analysis variable at the expense of another. Here, we demonstrate a quantum plasmonic sensor whose noise floor is reduced below the SNL in order to perform index of refraction measurements with sensitivities unobtainable with classical plasmonic sensors. The increased signal-to-noise ratio can result in faster detection of analyte concentrations that were previously lost in the noise. These benefits are the hallmarks of a sensor exploiting quantum readout fields in order to manipulate the limits of the Heisenberg uncertainty principle. (Figure Presented).

Original languageEnglish
Pages (from-to)8-13
Number of pages6
JournalACS Photonics
Volume3
Issue number1
DOIs
StatePublished - Jan 20 2016

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

Keywords

  • plasmonics
  • quantum optics
  • quantum plasmonics
  • quantum sensors
  • surface plasmon resonance sensors

Fingerprint

Dive into the research topics of 'Plasmonic Trace Sensing below the Photon Shot Noise Limit'. Together they form a unique fingerprint.

Cite this