TY - JOUR
T1 - Plant choice between arbuscular mycorrhizal fungal species results in increased plant P acquisition
AU - Weber, Sören Eliot
AU - Bascompte, Jordi
AU - Kahmen, Ansgar
AU - Niklaus, Pascal A.
N1 - Publisher Copyright:
© 2024 Weber et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/1
Y1 - 2024/1
N2 - Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that provide phosphorus (P) to plants in exchange for photosynthetically fixed carbon (C). Previous research has shown that plants-given a choice among AMF species-may preferentially allocate C to AMF species that provide more P. However, these investigations rested on a limited set of plant and AMF species, and it therefore remains unclear how general this phenomenon is. Here, we combined 4 plant and 6 AMF species in 24 distinct plant-AMF species compositions in splitroot microcosms, manipulating the species identity of AMF in either side of the root system. Using 14C and 32P/33P radioisotope tracers, we tracked the transfer of C and P between plants and AMF, respectively. We found that when plants had a choice of AMF species, AMF species which transferred more P acquired more C. Evidence for preferential C allocation to more beneficial AMF species within individual plant roots was equivocal. However, AMF species which transferred more P to plants did so at lower C-to-P ratios, highlighting the importance both of absolute and relative costs of P acquisition from AMF. When plants had a choice of AMF species, their shoots contained a larger total amount of P at higher concentrations. Our results thus highlight the benefits of plant C choice among AMF for plant P acquisition.
AB - Arbuscular mycorrhizal fungi (AMF) are plant root symbionts that provide phosphorus (P) to plants in exchange for photosynthetically fixed carbon (C). Previous research has shown that plants-given a choice among AMF species-may preferentially allocate C to AMF species that provide more P. However, these investigations rested on a limited set of plant and AMF species, and it therefore remains unclear how general this phenomenon is. Here, we combined 4 plant and 6 AMF species in 24 distinct plant-AMF species compositions in splitroot microcosms, manipulating the species identity of AMF in either side of the root system. Using 14C and 32P/33P radioisotope tracers, we tracked the transfer of C and P between plants and AMF, respectively. We found that when plants had a choice of AMF species, AMF species which transferred more P acquired more C. Evidence for preferential C allocation to more beneficial AMF species within individual plant roots was equivocal. However, AMF species which transferred more P to plants did so at lower C-to-P ratios, highlighting the importance both of absolute and relative costs of P acquisition from AMF. When plants had a choice of AMF species, their shoots contained a larger total amount of P at higher concentrations. Our results thus highlight the benefits of plant C choice among AMF for plant P acquisition.
UR - http://www.scopus.com/inward/record.url?scp=85183804228&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0292811
DO - 10.1371/journal.pone.0292811
M3 - Article
C2 - 38295035
AN - SCOPUS:85183804228
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 1 January
M1 - e0292811
ER -