PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics

Arka Daw, M. Maruf, Anuj Karpatne

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

25 Scopus citations

Abstract

As applications of deep learning (DL) continue to seep into critical scientific use-cases, the importance of performing uncertainty quantification (UQ) with DL has become more pressing than ever before. In scientific applications, it is also important to inform the learning of DL models with knowledge of physics of the problem to produce physically consistent and generalized solutions. This is referred to as the emerging field of physics-informed deep learning (PIDL). We consider the problem of developing PIDL formulations that can also perform UQ. To this end, we propose a novel physics-informed GAN architecture, termed PID-GAN, where the knowledge of physics is used to inform the learning of both the generator and discriminator models, making ample use of unlabeled data instances. We show that our proposed PID-GAN framework does not suffer from imbalance of generator gradients from multiple loss terms as compared to state-of-the-art. We also empirically demonstrate the efficacy of our proposed framework on a variety of case studies involving benchmark physics-based PDEs as well as imperfect physics. All the code and datasets used in this study have been made available on this link: https://github.com/arkadaw9/PID-GAN.

Original languageEnglish
Title of host publicationKDD 2021 - Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages237-247
Number of pages11
ISBN (Electronic)9781450383325
DOIs
StatePublished - Aug 14 2021
Externally publishedYes
Event27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021 - Virtual, Online, Singapore
Duration: Aug 14 2021Aug 18 2021

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2021
Country/TerritorySingapore
CityVirtual, Online
Period08/14/2108/18/21

Keywords

  • generative adversarial networks
  • physics-informed neural networks
  • uncertainty quantification

Fingerprint

Dive into the research topics of 'PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics'. Together they form a unique fingerprint.

Cite this