Physics of energetic ions

J. Jacquinot, S. Putvinski, G. Bosia, A. Fukuyama, R. Hemsworth, S. Konovalov, Y. Nagashima, W. M. Nevins, K. Rasumova, F. Romanelli, K. Tobita, K. Ushigusa, J. W. Van Dam, V. Vdovin, H. L. Berk, D. Borba, B. N. Breizman, R. Budny, J. Candy, C. Z. ChengC. Challis, A. Fasoli, G. Y. Fu, W. Heidbrink, R. Nazikian, G. Martin, F. Porcelli, M. Redi, M. N. Rosenbluth, G. Sadler, S. E. Sharapov, D. A. Spong, R. White, F. Zonca, F. W. Perkins, D. E. Post, N. A. Uckan, M. Azumi, D. J. Campbell, N. Ivanov, N. R. Sauthoff, M. Wakatani, W. M. Nevins, M. Shimada, J. Van Dam

Research output: Contribution to journalArticlepeer-review

128 Scopus citations

Abstract

Physics knowledge (theory and experiment) in energetic particles relevant to design of a reactor scale tokamak is reviewed, and projections for ITER are provided in this Chapter of the ITER Physics Basis. The review includes single particle effects such as classical alpha particle heating and toroidal field ripple loss, as well as collective instabilities that might be generated in ITER plasmas by energetic alpha particles. The overall conclusion is that fusion alpha particles are expected to provide an efficient plasma heating for ignition and sustained burn in the next step device. The major concern is localized heat loads on the plasma facing components produced by alpha particle loss, which might affect their lifetime in a tokamak reactor.

Original languageEnglish
Pages (from-to)2471-2494
Number of pages24
JournalNuclear Fusion
Volume39
Issue number12
DOIs
StatePublished - Dec 1999
Externally publishedYes

Fingerprint

Dive into the research topics of 'Physics of energetic ions'. Together they form a unique fingerprint.

Cite this