Physics guided machine learning for multi-material decomposition of tissues from dual-energy CT scans of simulated breast models with calcifications

Research output: Contribution to journalConference articlepeer-review

2 Scopus citations

Abstract

We introduce a physics guided data-driven method for image-based multi-material decomposition for dual-energy computed tomography (CT) scans. The method is demonstrated for CT scans of virtual human phantoms containing more than two types of tissues. The method is a physics-driven supervised learning technique. We take advantage of the mass attenuation coefficient of dense materials compared to that of muscle tissues to perform a preliminary extraction of the dense material from the images using unsupervised methods. We then perform supervised deep learning on the images processed by the extracted dense material to obtain the final multi-material tissue map. The method is demonstrated on simulated breast models with calcifications as the dense material placed amongst the muscle tissues. The physics-guided machine learning method accurately decomposes the various tissues from input images, achieving a normalized root-mean-squared error of 2.75%.

Original languageEnglish
Article number228
JournalIS and T International Symposium on Electronic Imaging Science and Technology
Volume35
Issue number11
DOIs
StatePublished - 2023
EventIS and T International Symposium on Electronic Imaging: High Performance Computing for Imaging, HPCI 2023 - San Francisco, United States
Duration: Jan 15 2023Jan 19 2023

Funding

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Fingerprint

Dive into the research topics of 'Physics guided machine learning for multi-material decomposition of tissues from dual-energy CT scans of simulated breast models with calcifications'. Together they form a unique fingerprint.

Cite this