Physics-guided architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling

Arka Daw, R. Quinn Thomas, Cayelan C. Carey, Jordan S. Read, Alison P. Appling, Anuj Karpatne

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

102 Scopus citations

Abstract

To simultaneously address the rising need of expressing uncertainties in deep learning models along with producing model outputs which are consistent with the known scientific knowledge, we propose a novel physics-guided architecture (PGA) of neural networks in the context of lake temperature modeling where the physical constraints are hard coded in the neural network architecture. This allows us to integrate such models with state of the art uncertainty estimation approaches such as Monte Carlo (MC) Dropout without sacrificing the physical consistency of our results. We demonstrate the effectiveness of our approach in ensuring better generalizability as well as physical consistency in MC estimates over data collected from Lake Mendota in Wisconsin and Falling Creek Reservoir in Virginia, even with limited training data. We further show that our MC estimates correctly match the distribution of ground-truth observations, thus making the PGA paradigm amenable to physically grounded uncertainty quantification.

Original languageEnglish
Title of host publicationProceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020
EditorsCarlotta Demeniconi, Nitesh Chawla
PublisherSociety for Industrial and Applied Mathematics Publications
Pages532-540
Number of pages9
ISBN (Electronic)9781611976236
DOIs
StatePublished - 2020
Externally publishedYes
Event2020 SIAM International Conference on Data Mining, SDM 2020 - Cincinnati, United States
Duration: May 7 2020May 9 2020

Publication series

NameProceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020

Conference

Conference2020 SIAM International Conference on Data Mining, SDM 2020
Country/TerritoryUnited States
CityCincinnati
Period05/7/2005/9/20

Fingerprint

Dive into the research topics of 'Physics-guided architecture (pga) of neural networks for quantifying uncertainty in lake temperature modeling'. Together they form a unique fingerprint.

Cite this