Abstract
The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A≡R/a=4.0, an elongation and triangularity of κ=2.20,δ=0.90 (evaluated at the separatrix surface), a toroidal beta of β=9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of βN≡100×β/(IP(MA)/a(m)B(T))=5.4. These beta values are chosen to be 10% below the ideal MHD stability limit. The bootstrap-current fraction is fBS≡IBS/IP=0.91. This leads to a design with total plasma current IP=12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current drive system consists of ICRF/FW for on-axis current drive and a Lower Hybrid system for off-axis. Transport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.
Original language | English |
---|---|
Pages (from-to) | 25-62 |
Number of pages | 38 |
Journal | Fusion Engineering and Design |
Volume | 80 |
Issue number | 1-4 |
DOIs | |
State | Published - Jan 2006 |
Externally published | Yes |
Keywords
- Advanced tokamak
- Fusion power plant
- Physics basis
- Reactor studies