Abstract
Pretreatment is commonly used to reduce recalcitrance of the lignin-carbohydrate matrix. In this study, leading pretreatment technologies, including dilute sulfuric acid, liquid hot water, alkaline, and organosolv pretreatments, were applied to the selected Populus trichocarpa genotype with relatively low lignin content to elucidate cellulose physicochemical property changes and digestibility-related factors. Pretreated Populus trichocarpa (BESC 131) exhibited higher accessibility and glucose yield than the untreated biomass. Chemical composition and Fourier transform infrared (FTIR) analysis results revealed that hemicellulose and lignin were removed to a varying extent depending on the pretreatment techniques applied. The degree of polymerization of the cellulose was decreased to the largest extent after dilute acid pretreatment, followed by organosolv, alkaline, and liquid hot water pretreatments. Cellulose crystallinity index was slightly changed after the pretreatments; however, its differences were not remarkable between those pretreatment techniques. Among four different pretreatments, organosolv was the most effective pretreatment technology in terms of sugar release, which was three times higher than that of the untreated native biomass. Among all of the tested cell wall traits, the lignin content of Populus trichocarpa was the most remarkable feature associated with glucose release, though Populus trichocarpa recalcitrance was not solely dependent on any single factor.
Original language | English |
---|---|
Pages (from-to) | 9658-9676 |
Number of pages | 19 |
Journal | BioResources |
Volume | 14 |
Issue number | 4 |
DOIs | |
State | Published - 2019 |
Funding
This manuscript has been authored, in part, by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy (DOE). This study was supported by and performed as part of the BioEnergy Science Center (BESC) and the Center for Bioenergy Innovation (CBI). The BESC and CBI are U.S Department of Energy Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. The authors are also grateful for the support of the National Natural Science Foundation of China (No. 21978074), the China Scholarship Council (No. 2011842330 and No. 201508420257), the key project of Hubei Provincial Department of Education (No. D20161402), and the Foundation (No. 201907B01 and No. 201806A03) of Hubei Provincial Key Laboratory of Green Materials for Light Industry. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accord with the DOE Public Access Plan (https://www.energy.gov/downloads/doe-public-access-plan). The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
Keywords
- Alkali pretreatment
- Cellulose characterization
- Dilute acid pretreatment
- Liquid hot water pretreatment
- Organosolv pretreatment
- Populus trichocarpa