Physical properties of star clusters in the outer LMC as observed by the DES

A. Pieres, B. Santiago, E. Balbinot, E. Luque, A. Queiroz, L. N. Da Costa, M. A.G. Maia, A. Drlica-Wagner, A. Roodman, T. M.C. Abbott, S. Allam, A. Benoit-Lévy, E. Bertin, D. Brooks, E. Buckley-Geer, D. L. Burke, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, C. E. CunhaS. Desai, H. T. Diehl, T. F. Eifler, D. A. Finley, B. Flaugher, P. Fosalba, J. Frieman, D. W. Gerdes, D. Gruen, R. A. Gruendl, G. Gutierrez, K. Honscheid, D. J. James, K. Kuehn, N. Kuropatkin, O. Lahav, T. S. Li, J. L. Marshall, P. Martini, C. J. Miller, R. Miquel, R. C. Nichol, B. Nord, R. Ogando, A. A. Plazas, A. K. Romer, E. Sanchez, V. Scarpine, M. Schubnell, I. Sevilla-Noarbe, R. C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M. E.C. Swanson, G. Tarle, J. Thaler, D. Thomas, D. L. Tucker, A. R. Walker

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The Large Magellanic Cloud (LMC) harbours a rich and diverse system of star clusters, whose ages, chemical abundances and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey (DES) to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalogue. We quantify the crowding effect for the stellar sample produced by the DES Data Management pipeline and conclude that the stellar completeness is <10 per cent inside typical LMC cluster cores. We therefore reanalysed the DES co-add images around each candidate cluster and remeasured positions and magnitudes for their stars. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal rich than [Fe/H] ≃ -0.7 beyond 8 kpc from the LMC centre. The age distribution has two peaks at ≃1.2 and ≃2.7 Gyr.

Original languageEnglish
Pages (from-to)519-541
Number of pages23
JournalMonthly Notices of the Royal Astronomical Society
Volume461
Issue number1
DOIs
StatePublished - Sep 1 2016
Externally publishedYes

Funding

ACKNOWLEDGEMENTS We would like to thank the anonymous referee for many useful suggestions. This paper has gone through internal review by the DES collaboration. AdP acknowledges financial support from the Brazilian Institution CNPq. EdB acknowledges financial support from the European Research Council (ERC-StG-335936, CLUSTERS). We are grateful for the extraordinary contributions of our CTIO colleagues and the DECam Construction, Commissioning and Science Verification teams in achieving the excellent instrument and telescope conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the DES Data Management group. Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology FacilitiesCouncil of theUnitedKingdom, theHigher Education Funding Council for England, the NationalCenter for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A and M University, Financiadora de Estudos e Projetos, Fundaç ão Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovaç ão, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Enérgeticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l'Espai (IEEC/CSIC), the Institut de Física d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex and Texas A and M University. The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478.

FundersFunder number
Centro de Excelencia Severo OchoaSEV-2012-0234
Collaborating Institutions are Argonne National Laboratory
Collaborating Institutions in the Dark Energy Survey
Institut de Ciències de l'Espai
Mitchell Institute for Fundamental Physics and Astronomy
National Science FoundationAST-1138766
U.S. Department of Energy
University of Illinois at Urbana-Champaign
Stanford University
Fermilab
Lawrence Berkeley National Laboratory
University of California, Santa Cruz
University of Pennsylvania
Ohio State University
University of Chicago
University of Michigan
University of Portsmouth
National Centre for Supercomputing Applications
Seventh Framework Programme1138766, 240672, 306478, 335936, 291329
SLAC National Accelerator Laboratory
Science and Technology Facilities Council
Higher Education Funding Council for England
University College London
European Research Council
University of Nottingham
University of Sussex
University of Edinburgh
Deutsche Forschungsgemeinschaft
Eidgenössische Technische Hochschule Zürich
Ministerio de Economía y CompetitividadFPA2013-47986, AYA2012-39559, ESP2013-48274
Ministério da Ciência, Tecnologia e Inovação
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Financiadora de Estudos e Projetos
Seventh Framework Programme
Ludwig-Maximilians-Universität München
Ministry of Education and Science of Ukraine
Institut de Física d'Altes Energies

    Keywords

    • Galaxies: star clusters: general
    • Magellanic Cloud
    • Methods: statistical

    Fingerprint

    Dive into the research topics of 'Physical properties of star clusters in the outer LMC as observed by the DES'. Together they form a unique fingerprint.

    Cite this