Abstract
Vertex models are an important class of statistical mechanical system that admit exact solutions and exotic physics. Applications include water ice, ferro- and antiferro-electrics, spin ice and artificial spin ice. Here we show that it is possible to engineer spin ice films with atomic-layer precision down to the monolayer limit. Specific heat measurements show that these films, which have a fundamentally different symmetry to bulk spin ice, realise systems close to the two-dimensional F-model, with exotic phase transitions on topologically-constrained configurational manifolds. Our results show how spin ice thin films can release the celebrated Pauling entropy of spin ice without an anomaly in the specific heat. They also significantly expand the class of vertex models available to experiment.
Original language | English |
---|---|
Article number | 1219 |
Journal | Nature Communications |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - Dec 1 2019 |
Funding
We would like to thank R. Thorogate for technical assistance. We also thank M.J.P. Gingras and H. Kurebayashi for a related collaboration. Pulsed laser deposition of the thin films was conducted by L.B. and with assistance from CMR at the Centre for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (CNMS2015-251). L.B. was supported by The Leverhulme Trust through the Early Career Fellowship programme (ECF2014-284). D.P. acknowledges support from the EPSRC grant EP/K028960/1. L.B. and S.T.B. acknowledge additional support from Leverhulme Trust grant RPG-2016-391.