Periodic Trends behind the Stability of Metal Catalysts Supported on Graphene with Graphitic Nitrogen Defects

Vu Nguyen, Brian D. Etz, Svitlana Pylypenko, Shubham Vyas

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

This study explored the fundamental chemical intricacies behind the interactions between metal catalysts and carbon supports with graphitic nitrogen defects. These interactions were probed by examining metal adsorption, specifically, the location of adsorption and the electronic structure of metal catalysts as the basis for the metal-support interactions (MSIs). A computational framework was developed, and a series of 12 transition metals was systematically studied over various graphene models with graphitic nitrogen defect(s). Different modeling approaches served to provide insights into previous MSI computational discrepancies, reviewing both truncated and periodic graphene models. The computational treatment affected the magnitudes of adsorption energies between the metals and support; however, metals generally followed the same trends in their MSI. It was found that the addition of the nitrogen dopant improved the MSI by promoting electronic rearrangement from the metals' d- to s-orbitals for greater orbital overlap with the carbon support, shown with increased favorable adsorption. Furthermore, the study observed periodic trends that were adept descriptors of the MSI fundamental chemistries.

Original languageEnglish
Pages (from-to)28215-28228
Number of pages14
JournalACS Omega
Volume6
Issue number42
DOIs
StatePublished - Oct 26 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Periodic Trends behind the Stability of Metal Catalysts Supported on Graphene with Graphitic Nitrogen Defects'. Together they form a unique fingerprint.

Cite this