Periodic hole structure in a spin-chain ladder material Sr14Cu24O41

T. Fukuda, J. Mizuki, M. Matsuda

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

High-energy synchrotron x-ray diffraction measurements were carried out on a single crystal of Sr14Cu24O41, which had been reported to have different magnetic and structural correlations, in order to investigate the origin of this discrepancy more precisely. At low temperature, we observed weak superlattice peaks at Q=(0,0,2n±1/5)c, while nothing was found at Q=(0,0,2n± 1/4)c, which was reported in a previous x-ray work by Cox et al. [Phys. Rev. B 57, 10 750 (1998)]. Therefore, the lattice distortion has not 4 but 5 times the periodicity of the chain structure along c (∥ chain axis) direction. These satellite peaks decreased in intensity with increasing temperature. These observations were interpreted properly in terms of a hole ordering model involving the dimerized state of two Cu2+ ions and a Cu3+ ion on a Zhang-Rice singlet site in the CuO2 chains. These features were clearly observed by using high-energy x rays (Ei≃53.789 keV), while the superlattice peak intensity varied drastically with very little sample surface treatment in the case of low-energy x-ray experiments (Ei≃ 15.498 keV).

Original languageEnglish
Article number012104
Pages (from-to)121041-121044
Number of pages4
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume66
Issue number1
StatePublished - Jul 1 2002
Externally publishedYes

Fingerprint

Dive into the research topics of 'Periodic hole structure in a spin-chain ladder material Sr14Cu24O41'. Together they form a unique fingerprint.

Cite this