Performance Porting the ExaStar Multi-Physics App Thornado On Heterogeneous Systems - A Fortran-OpenMP Code-Base Evaluation

Mathialakan Thavappiragasam, J. Austin Harris, Eirik Endeve, Brice Videau

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The heterogeneity of HPC systems requires efficient host-to-device porting of compute kernels and high-bandwidth data communication. This capability varies from one system to another depending on system architectures and environments. New vendors such as AMD and Intel are entering the GPU field, creating a software portability challenge. Major scientific simulation code bases rely on Fortran and require portable programming models for performance porting to HPC systems with high software productivity. Even though OpenMP target offloading features support portability, most Fortran-OpenMP code bases face significant challenges. Hence, in this work, we motivated an evaluation of a) the computing capability of heterogeneous systems for Fortran-OpenMP-based multi-physics code bases, and b) the performance portability of the astrophysical supernova simulation code Flash-X on heterogeneous systems. For this study, three HPC systems were chosen: Sunspot, a test-bed system of the Intel-PVC GPU featured supercomputer Aurora and Polaris, an NVIDIA system accelerated by A100 GPU, both located at the Argonne Leadership Computing Facility (ALCF), and the AMD-MI250-based Frontier at the Oak Ridge Leadership Computing Facility (OLCF). We discuss challenges and solutions for performance porting the compute-intensive module Thornado, which can be incorporated as an external library in Flash-X to model neutrino transport. We show that the performance of test apps improved by approximately 24× using the relevant optimization strategies + compiler-and-system updates. Further, this study helped improve the intel OneAPI-OpenMP compiler by providing bug reports and reproducers internally.

Original languageEnglish
Title of host publicationAdvancing OpenMP for Future Accelerators - 20th International Workshop on OpenMP, IWOMP 2024, Proceedings
EditorsAlexis Espinosa, Maciej Cytowski, Michael Klemm, Bronis R. de Supinski, Jannis Klinkenberg
PublisherSpringer Science and Business Media Deutschland GmbH
Pages16-30
Number of pages15
ISBN (Print)9783031725661
DOIs
StatePublished - 2024
Event20th International Workshop on OpenMP, IWOMP 2024 - Perth, Australia
Duration: Sep 23 2024Sep 25 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15195 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Workshop on OpenMP, IWOMP 2024
Country/TerritoryAustralia
CityPerth
Period09/23/2409/25/24

Keywords

  • Concurrent multi-tasking
  • Fortran-OpenMP code base
  • Intel’s PVC GPU
  • Multi-physics toolkit
  • OpenACC
  • OpenMP target offloading
  • Porting to heterogeneous systems

Fingerprint

Dive into the research topics of 'Performance Porting the ExaStar Multi-Physics App Thornado On Heterogeneous Systems - A Fortran-OpenMP Code-Base Evaluation'. Together they form a unique fingerprint.

Cite this