Performance overview of the production superconducting RF cavities for the spallation neutron source linac

J. Delayen, J. Mammosser, J. P. Ozelis

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

As part of its efforts for the SNS construction project, Jefferson Lab has produced 23 cryomodules for the superconducting linac. These modules contained 81 industrially produced multicell Nb accelerating cavities. Each of these cavities was individually tested before assembly into a cryomodule to verify that they achieved the required performance. This ensemble of cavities represents the 3rd largest set of production superconducting cavities fabricated and tested to date. The timely qualification testing of such a collection of cavities offers both challenges and opportunities. Their performance can be characterized by achieved gradient at the required Qo, achieved peak surface field, onset of field emission, and observations of multipacting. Possible correlations between cavity performance and process parameters, only really meaningful in the framework of a large scale production effort, will also be presented. In light of the potential adoption of these cavities for projects such as the Rare Isotope Accelerator or Fermilab Proton Driver, such an analysis is crucial to their success.

Original languageEnglish
Title of host publicationProceedings of the Particle Accelerator Conference, PAC 2005
Pages4048-4050
Number of pages3
DOIs
StatePublished - 2005
Externally publishedYes
EventParticle Accelerator Conference, PAC 2005 - Knoxville, TN, United States
Duration: May 16 2005May 20 2005

Publication series

NameProceedings of the IEEE Particle Accelerator Conference
Volume2005

Conference

ConferenceParticle Accelerator Conference, PAC 2005
Country/TerritoryUnited States
CityKnoxville, TN
Period05/16/0505/20/05

Fingerprint

Dive into the research topics of 'Performance overview of the production superconducting RF cavities for the spallation neutron source linac'. Together they form a unique fingerprint.

Cite this