Abstract
Additive manufacturing was used to fabricate a head for an automotive-scale single-cylinder engine operating on natural gas. The head was consisted of a bimetallic composition of stainless steel and bronze. The engine performance using the bimetallic head was compared against the stock cast iron head. The heads were tested at two speeds (1200 and 1800 rpm), two brake mean effective pressures (6 and 10 bar), and two equivalence ratios (0.7 and 1.0). The bimetallic head showed good durability over the test and produced equivalent efficiencies, exhaust temperatures, and heat rejection to the coolant to the stock head. Higher combustion temperatures and advanced combustion phasing resulted from use with the bimetallic head. The implication is that with optimization of the valve timing, an efficiency benefit may be realized with the bimetallic head.
Original language | English |
---|---|
Journal | SAE Technical Papers |
Volume | 2020-April |
Issue number | April |
DOIs | |
State | Published - Apr 14 2020 |
Event | SAE 2020 World Congress Experience, WCX 2020 - Detroit, United States Duration: Apr 21 2020 → Apr 23 2020 |
Funding
This paper and the work described were sponsored by the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO). The authors gratefully acknowledge the support and direction of Bob Gemmer of AMO. The authors are also very appreciative of efforts by Steve Whited (of Oak Ridge National Laboratory) to ensure that the printed head met the required specifications in a timely manner. Oak Ridge National Laboratory is a multi-program laboratory operated by UT-Battelle for the U.S. Department of Energy under contract DE-AC0500OR22725.