Performance Modeling of in Situ Rendering

Matthew Larsen, Cyrus Harrison, James Kress, David Pugmire, Jeremy S. Meredith, Hank Childs

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

21 Scopus citations

Abstract

With the push to exascale, in situ visualization and analysis will continue to play an important role in high performance computing. Tightly coupling in situ visualization with simulations constrains resources for both, and these constraints force a complex balance of trade-offs. A performance model that provides an a priori answer for the cost of using an in situ approach for a given task would assist in managing the trade-offs between simulation and visualization resources. In this work, we present new statistical performance models, based on algorithmic complexity, that accurately predict the run-time cost of a set of representative rendering algorithms, an essential in situ visualization task. To train and validate the models, we conduct a performance study of an MPI+X rendering infrastructure used in situ with three HPC simulation applications. We then explore feasibility issues using the model for selected in situ rendering questions.

Original languageEnglish
Title of host publicationProceedings of SC 2016
Subtitle of host publicationThe International Conference for High Performance Computing, Networking, Storage and Analysis
PublisherIEEE Computer Society
Pages276-287
Number of pages12
ISBN (Electronic)9781467388153
DOIs
StatePublished - Jul 2 2016
Event2016 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016 - Salt Lake City, United States
Duration: Nov 13 2016Nov 18 2016

Publication series

NameInternational Conference for High Performance Computing, Networking, Storage and Analysis, SC
Volume0
ISSN (Print)2167-4329
ISSN (Electronic)2167-4337

Conference

Conference2016 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2016
Country/TerritoryUnited States
CitySalt Lake City
Period11/13/1611/18/16

Fingerprint

Dive into the research topics of 'Performance Modeling of in Situ Rendering'. Together they form a unique fingerprint.

Cite this