Abstract
The development of catalysts free of platinum-group metals and with both a high activity and durability for the oxygen reduction reaction in proton exchange membrane fuel cells is a grand challenge. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. The Co–N–C catalyst achieved a current density of 0.022 A cm−2 at 0.9 ViR-free (internal resistance-compensated voltage) and peak power density of 0.64 W cm−2 in 1.0 bar H2/O2 fuel cells, higher than that of non-iron platinum-group-metal-free catalysts reported in the literature. Importantly, we identified two main degradation mechanisms for metal (M)–N–C catalysts: catalyst oxidation by radicals and active-site demetallation. The enhanced durability of Co–N–C relative to Fe–N–C is attributed to the lower activity of Co ions for Fenton reactions that produce radicals from the main oxygen reduction reaction by-product, H2O2, and the significantly enhanced resistance to demetallation of Co–N–C. [Figure not available: see fulltext.]
Original language | English |
---|---|
Pages (from-to) | 1044-1054 |
Number of pages | 11 |
Journal | Nature Catalysis |
Volume | 3 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2020 |
Funding
The authors acknowledge support from the US Department of Energy, Energy Efficiency and Renewable Energy, Hydrogen and Fuel Cell Technologies Office (DOE-EERE-HFTO) through the Electrocatalysis consortium (ElectroCat) and the DOE programme managers, D. Papageorgopoulos, S. Thompson, D. Peterson and G. Kleen. The XPS measurement was performed using EMSL(grid.436923.9), a DOE Office of Science user facility sponsored by the Biological and Environmental Research programme. PNNL is operated by Battelle for the US DOE under contract DE-AC05-76RLO1830. X-ray spectroscopy experiments were performed at MRCAT at the Advanced Photon Source (APS), a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The operation of MRCAT is supported both by DOE and the MRCAT member institutions. Argonne National Laboratory is operated for the US DOE by the University of Chicago Argonne LLC under contract no. DE-AC02-06CH11357. Electron microscopy was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The DFT calculations were performed on the computers of the University of Pittsburgh Center for Research Computing as well as the Extreme Science and Engineering Discovery Environment (XSEDE), which is funded by National Science Foundation grant no. ACI-1053575.