Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells

Xiaohong Xie, Cheng He, Boyang Li, Yanghua He, David A. Cullen, Evan C. Wegener, A. Jeremy Kropf, Ulises Martinez, Yingwen Cheng, Mark H. Engelhard, Mark E. Bowden, Miao Song, Teresa Lemmon, Xiaohong S. Li, Zimin Nie, Jian Liu, Deborah J. Myers, Piotr Zelenay, Guofeng Wang, Gang WuVijay Ramani, Yuyan Shao

Research output: Contribution to journalArticlepeer-review

491 Scopus citations

Abstract

The development of catalysts free of platinum-group metals and with both a high activity and durability for the oxygen reduction reaction in proton exchange membrane fuel cells is a grand challenge. Here we report an atomically dispersed Co and N co-doped carbon (Co–N–C) catalyst with a high catalytic oxygen reduction reaction activity comparable to that of a similarly synthesized Fe–N–C catalyst but with a four-time enhanced durability. The Co–N–C catalyst achieved a current density of 0.022 A cm−2 at 0.9 ViR-free (internal resistance-compensated voltage) and peak power density of 0.64 W cm−2 in 1.0 bar H2/O2 fuel cells, higher than that of non-iron platinum-group-metal-free catalysts reported in the literature. Importantly, we identified two main degradation mechanisms for metal (M)–N–C catalysts: catalyst oxidation by radicals and active-site demetallation. The enhanced durability of Co–N–C relative to Fe–N–C is attributed to the lower activity of Co ions for Fenton reactions that produce radicals from the main oxygen reduction reaction by-product, H2O2, and the significantly enhanced resistance to demetallation of Co–N–C. [Figure not available: see fulltext.]

Original languageEnglish
Pages (from-to)1044-1054
Number of pages11
JournalNature Catalysis
Volume3
Issue number12
DOIs
StatePublished - Dec 2020

Bibliographical note

Publisher Copyright:
© 2020, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Fingerprint

Dive into the research topics of 'Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells'. Together they form a unique fingerprint.

Cite this