Performance Analysis of Parallel FFT on Large Multi-GPU Systems

Alan Ayala, Stan Tomov, Miroslav Stoyanov, Azzam Haidar, Jack Dongarra

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

In this paper we present a performance study of multidimensional Fast Fourier Transforms (FFT) with GPU accelerators on modern hybrid architectures, as those expected for upcoming exascale systems. We assess and leverage features from traditional implementations of parallel FFTs and provide an algorithm that encompasses a wide range of their parameters, and adds novel developments such as FFT grid shrinking and batched transforms. Next, we create a bandwidth model to quantify the computational costs and analyze the well-known communication bottleneck for All-to-All and Point-to-Point MPI exchanges. Then, using a tuning methodology, we are able to accelerate the FFT computation and reduce the communication cost, achieving linear scalability on a large-scale system with GPU accelerators. Finally, our performance analysis is extended to show that carefully tuning the algorithm can further accelerate applications heavily relying on FFTs, such is the case of molecular dynamics software. Our experiments were performed on Summit and Spock supercomputers with IBM Power9 cores, over 3000 NVIDIA V-100 GPUs, and AMD MI-100 GPUs.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages372-381
Number of pages10
ISBN (Electronic)9781665497473
DOIs
StatePublished - 2022
Event36th IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022 - Virtual, Online, France
Duration: May 30 2022Jun 3 2022

Publication series

NameProceedings - 2022 IEEE 36th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022

Conference

Conference36th IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2022
Country/TerritoryFrance
CityVirtual, Online
Period05/30/2206/3/22

Keywords

  • FFT
  • MPI tuning
  • Multi-GPU
  • Scalability

Fingerprint

Dive into the research topics of 'Performance Analysis of Parallel FFT on Large Multi-GPU Systems'. Together they form a unique fingerprint.

Cite this