Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

Nataliia Makedonska, Scott L. Painter, Quan M. Bui, Carl W. Gable, Satish Karra

Research output: Contribution to journalArticlepeer-review

92 Scopus citations

Abstract

The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. We demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

Original languageEnglish
Pages (from-to)1123-1137
Number of pages15
JournalComputational Geosciences
Volume19
Issue number5
DOIs
StatePublished - Oct 1 2015

Funding

We thank Terry Miller, Tsung-Lin Hsieh, and Ahinoam Pollack for their technical support, and Dr. Andrew Frampton for fruitful discussions. We thank the U.S. Department of Energy Used Fuel Disposition Campaign for supporting this work.

Keywords

  • Advective transport
  • Control volume method
  • Discrete fracture network
  • Numerical modeling
  • Particle tracking
  • Subsurface flow

Fingerprint

Dive into the research topics of 'Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs'. Together they form a unique fingerprint.

Cite this