Parametric studies of heat pump water heater using low GWP refrigerants

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

A storage heat pump water heater (HPWH) comprises a vapor compression system and a hot water tank. It can lead to more than 70% energy saving, compared with electric resistance heating. HPWH usually uses a wrapped-tank coil as the water heater. The wrapped coil has a strong interaction with the water tank and impose a new challenge for the engineering design and simulation study. Based on the US DOE/ORNL Heat Pump Design Model (HPDM), i.e., a public-domain, component-based thermal system modelling platform, a segment-to-segment wrapped-tank coil model coupled with a one-dimensional stratified water tank model were developed, which facilitates modeling and design HPWHs having various configurations and components. The hardware-based design model was used to evaluate refrigerants having lower global warming potentials to replace R-134a, including R-1234yf, R-1234ze, R-290, R-513A and R-450A, when effects of compressor size, refrigerant charge on 24-hour uniform energy factor (UEF) and first-hour rating (FHR) were investigated. In the drop-in replacements, R-1234ze achieved the best UEF, and R-290 resulted in the lowest UEF. When downsizing the compressor to maximize the UEFs, the UEFs of R-134a, R-290, R1234yf, R-450A and R-513A ascended to the range of 4.4 to 4.53, with R-513A having the highest UEF. The R-1234ze ended up having the lowest UEF of 4.27. Refrigerants having larger volumetric vaporization heat led to higher FHRs if using the fixed-size compressor, that R-290 resulted in the highest FHR.

Original languageEnglish
Pages (from-to)407-415
Number of pages9
JournalInternational Journal of Refrigeration
Volume131
DOIs
StatePublished - Nov 2021

Funding

Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). The authors are grateful to Mr. Antonio Bouza, Technology Development Manager of the U.S Department of Energy, Building Technologies Office for supporting this work.

FundersFunder number
U.S. Department of Energy
Bioenergy Technologies Office

    Keywords

    • Heat pump water heater
    • Low global warming potential
    • Quasi-steady-state simulation
    • Segment-to-segment wrapped-tank condenser model
    • Stratified water tank model

    Fingerprint

    Dive into the research topics of 'Parametric studies of heat pump water heater using low GWP refrigerants'. Together they form a unique fingerprint.

    Cite this