Abstract
A storage heat pump water heater (HPWH) comprises a vapor compression system and a hot water tank. It can lead to more than 70% energy saving, compared with electric resistance heating. HPWH usually uses a wrapped-tank coil as the water heater. The wrapped coil has a strong interaction with the water tank and impose a new challenge for the engineering design and simulation study. Based on the US DOE/ORNL Heat Pump Design Model (HPDM), i.e., a public-domain, component-based thermal system modelling platform, a segment-to-segment wrapped-tank coil model coupled with a one-dimensional stratified water tank model were developed, which facilitates modeling and design HPWHs having various configurations and components. The hardware-based design model was used to evaluate refrigerants having lower global warming potentials to replace R-134a, including R-1234yf, R-1234ze, R-290, R-513A and R-450A, when effects of compressor size, refrigerant charge on 24-hour uniform energy factor (UEF) and first-hour rating (FHR) were investigated. In the drop-in replacements, R-1234ze achieved the best UEF, and R-290 resulted in the lowest UEF. When downsizing the compressor to maximize the UEFs, the UEFs of R-134a, R-290, R1234yf, R-450A and R-513A ascended to the range of 4.4 to 4.53, with R-513A having the highest UEF. The R-1234ze ended up having the lowest UEF of 4.27. Refrigerants having larger volumetric vaporization heat led to higher FHRs if using the fixed-size compressor, that R-290 resulted in the highest FHR.
Original language | English |
---|---|
Pages (from-to) | 407-415 |
Number of pages | 9 |
Journal | International Journal of Refrigeration |
Volume | 131 |
DOIs | |
State | Published - Nov 2021 |
Bibliographical note
Publisher Copyright:© 2021
Keywords
- Heat pump water heater
- Low global warming potential
- Quasi-steady-state simulation
- Segment-to-segment wrapped-tank condenser model
- Stratified water tank model