TY - GEN
T1 - Parallel heuristics for scalable community detection
AU - Lu, Hao
AU - Halappanavar, Mahantesh
AU - Kalyanaraman, Ananth
AU - Choudhury, Sutanay
N1 - Publisher Copyright:
© 2014 IEEE.
PY - 2014/11/27
Y1 - 2014/11/27
N2 - Community detection has become a fundamental operation in numerous graph-theoretic applications. It is used to reveal natural divisions that exist within real world networks without imposing prior size or cardinality constraints on the set of communities. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed by Blondel et al. in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method is also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains (e.g., internet, citation, biological). Compared to the serial Louvain implementation, our parallel implementation is able to produce community outputs with a higher modularity for most of the inputs tested, in comparable number of iterations, while providing real speedups of up to 8× using 32 threads. In addition, our parallel implementation was able to exhibit weak scaling properties on up to 32 threads.
AB - Community detection has become a fundamental operation in numerous graph-theoretic applications. It is used to reveal natural divisions that exist within real world networks without imposing prior size or cardinality constraints on the set of communities. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed by Blondel et al. in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method is also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains (e.g., internet, citation, biological). Compared to the serial Louvain implementation, our parallel implementation is able to produce community outputs with a higher modularity for most of the inputs tested, in comparable number of iterations, while providing real speedups of up to 8× using 32 threads. In addition, our parallel implementation was able to exhibit weak scaling properties on up to 32 threads.
KW - Community detection
KW - Graph coloring
KW - Louvain method
KW - Parallel graph algorithms
KW - Parallel heuristics
UR - http://www.scopus.com/inward/record.url?scp=84918801241&partnerID=8YFLogxK
U2 - 10.1109/IPDPSW.2014.155
DO - 10.1109/IPDPSW.2014.155
M3 - Conference contribution
AN - SCOPUS:84918801241
T3 - Proceedings - IEEE 28th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2014
SP - 1374
EP - 1382
BT - Proceedings - IEEE 28th International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2014
PB - IEEE Computer Society
T2 - 28th IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2014
Y2 - 19 May 2014 through 23 May 2014
ER -